MATH-UA 325 Analysis I Fall 2023

Square Root of 2 is Irrational Reals Arithmetic and Ordering of Reals Upper and Lower Bounds Completeness of \mathbb{R} Square Root of 2 is in \mathbb{R}

Deane Yang September 12, 2023

Courant Institute of Mathematical Sciences New York University

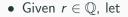
The Square Root of 2 is Not Rational

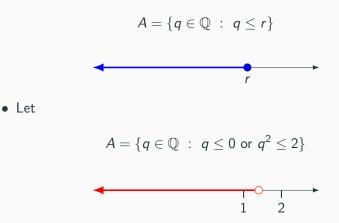
- But there is no rational number r such that $r^2 = 2$
 - Suppose $r \in \mathbb{Q}$ satisfies $r^2 = 2$
 - Since $r \in \mathbb{Q}$, there are integers p, q such that $r = \frac{p}{r}$
 - Assume p and q have no common factors
 - At least one has to be odd
 - Therefore

$$\frac{p^2}{q^2} = 2 \implies p^2 = 2q^2$$

- p^2 is even, so p is even
- Therefore, p^2 is divisible by 4
- Therefore, q is even
- Contradiction

The Set of Rationals Has Holes





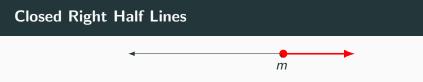
- $\bullet\,$ The set of real numbers is denoted $\mathbb R$
- $\bullet\,$ They are designed to fill in all of the holes in $\mathbb Q$
- The reals can be defined in different ways:
 - Infinite decimals
 - Dedekind cuts

Open Left Half Lines in Q

- A left half line in Q is a nonempty subset A ⊂ Q such that the following hold:
 - If $b \in A$, $a \in \mathbb{Q}$, and $a \leq b$, then $a \in A$
- Example: Given $r \in \mathbb{Q}$,

$$(-\infty,r] = \{q \in \mathbb{Q} : q \leq r\}$$

- A half line A is **open** if the following holds:
 - If $b \in A$, then $\exists c \in A$ such that b < c
- Examples:
 - For each $r \in \mathbb{Q}$, $(-\infty, r)$
 - $\{q\in\mathbb{Q}\ :\ q\leq 0 \text{ or } q^2\leq 2\}$
- Every rational has an open left half line next to it
- Not every open left half line has a rational next to it
- Idea: Define the real numbers using open left half lines



- A right half line in Q is a nonempty subset B ⊂ Q such that the following hold:
 - If $b \in B$, $a \in \mathbb{Q}$, and $a \ge b$, then $a \in B$
- Example: Given $r \in \mathbb{Q}$,

$$(-\infty, r] = \{q \in \mathbb{Q} : q > r\}$$

- A half line A is closed if there exists m ∈ Q such that q ≥ m for each q ∈ Q
- Examples:
 - $\{q\in\mathbb{Q}\ :\ q^2\geq 4\}$ is a closed right half line
 - $\{q\in\mathbb{Q}\ :\ q^2\geq 2\}$ is not a closed right half line

Dedekind Cuts

- A cut is a pair of nonempty disjoint subsets A, B ⊂ Q, denoted (A|B) such that
 - A is an open left half line
 - $B = \mathbb{Q} \setminus A$
- For each $r \in \mathbb{Q}$, there is a unique cut (A|B) such that

$$A = \{q \in \mathbb{Q} \ : \ q < r\}$$
 and $B = \{q \in \mathbb{Q} \ : \ q \geq r\},$

where B is a closed left half line

• On the other hand, if (A|B) is the cut such that

$$A=\{q\in \mathbb{Q}~:~q\leq 0 ext{ or } q^2<2\}$$
 and $B=\{q\in \mathbb{Q}~:~q^2\geq 2\},$

then B is not a closed left half line

The Reals

- $\bullet\,$ Define the set of real numbers to be the set of all cuts in $\mathbb Q$
- Ordering of reals
 - (A|B) = (C|D) if A = C
 - $(A|B) \leq (C|D)$ if $A \subset C$
 - (A|B) < (C|D) if $(A|B) \le (C|D)$ and $(A|B) \ne (C|D)$
 - The following hold:
 - $\forall x \in \mathbb{R}, x \leq x$
 - $\forall x, y, z \in \mathbb{R}, \ x \leq y \text{ and } y \leq z \implies x \leq z$
 - $\forall x, y \in \mathbb{R}, x \leq y \text{ and } y \leq x \implies x = y$
- Arithmetic of the reals
 - Define the sum and product of two reals
 - Show they satisfy the properties of arithmetic
 - Show that the rules of arithmetic are equivalent to that of the rations
 - Proofs are not so easy and not so interesting

Real Arithmetic

- Given $x, y \in \mathbb{R}$, its sum is denoted $x + y \in \mathbb{R}$
- Given $x, y \in \mathbb{R}$, its product is denoted $xy \in \mathbb{R}$
- The following properties hold:
 - $\forall x, y \in \mathbb{R}, x + y = y + x$
 - $\forall x, y, z \in \mathbb{R}, (x+y) + z = x + (y+z)$
 - $\exists \ 0 \in \mathbb{R}$ such that $\forall z \in \mathbb{R}, 0 + z = z$
 - $\forall x \in \mathbb{R}, \exists -x \in \mathbb{R} \text{ such that} x + (-x) = 0$
 - $\forall x, y, \in \mathbb{R}, xy = yx$
 - $\forall x, y, z \in \mathbb{R}, (xy)z = x(yz)$
 - $\exists 1 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}, \ 1x = x$
 - $\forall x \in \mathbb{R}$, if $x \neq 0$, then $\exists x^{-1}$ such that $xx^{-1} = 1$
 - x(y+z) = xy + xz

- $\forall x, y \in \mathbb{R}$, exactly one of the following is true:
 - *x* < *y*
 - x = y
 - x > y
- $\forall x, y, z \in \mathbb{R}$, if x < y and y < z, then x < z
- $\forall x, y, z \in \mathbb{R}$, if x < y, then x + z < y + z
- $\forall x, y \in \mathbb{R}$, if x, y > 0, then xy > 0

Proposition 1.1.8: Consequences of Arithmetic and Ordering Propeties

• $\forall x \in \mathbb{R}, \ 0x = 0$

$$0x = (x - x)x = x^2 - x^2 = 0$$

•
$$\forall x \in \mathbb{R}, x > 0 \iff -x < 0$$

- $\forall x, y, z \in \mathbb{R}$, if x > 0, then $y < z \implies xy < xz$
- $\forall x, y, z \in \mathbb{R}$, if x < 0, then $y < z \implies xy > xz$

•
$$\forall x \in \mathbb{R}, x \neq 0 \implies x^2 > 0$$

- $\forall x, y \in \mathbb{R}, x < y \implies x^{-1} > y^{-1}$
- $\forall x, y \in \mathbb{R}$, if x, y > 0,

$$x < y \iff x^2 < y^2$$

• $\forall x, y, z, w \in \mathbb{R}$,

$$x \leq y \text{ and } z \leq w \implies x + z \leq y + w$$

• An **upper bound** of a nonempty set $S \subset \mathbb{R}$ is a number $b \in \mathbb{R}$ such that

$$\forall s \in S, s \leq b$$

- Example: 5 is an upper bound for $(-\infty, -1]$
- A set S ⊂ ℝ is bounded from above if it has at least one upper bound
 - $\{2^{-n} : n \in \mathbb{N}\}$ is bounded from above by 1
 - \mathbb{N} is not bounded from above

Least Upper Bound of a subset in $\ensuremath{\mathbb{R}}$

 The least upper bound of a set S ⊂ R that is bounded from below is an upper bound m ∈ R such that if b ∈ R is an upper bound, then

$$m \leq b$$

- The least upper bound of S need not be in S
- Example: For each $r \in \mathbb{R}$,

$$\sup(-\infty,r) = \sup(-\infty,r] = r$$

• For any cut r = (A|B), $r \in \mathbb{R}$ is the least upper bound of $B \subset \mathbb{R}$

Theorem. Any subset of \mathbb{R} that is bounded from above has a least upper bound

- This is the fundamental property that the reals have but the rationals do not
- It is a mathematically precise way to say that the real line has no holes

$\sqrt{2} \in \mathbb{R}$ Part 1

- The set $A = \{r \in \mathbb{R} : r^2 < 2\}$ is bounded from above
- If $r \in A$, then
 - $2 r^2 > 0$
 - Therefore, there exists 0 $<\epsilon<1$ such that 2 $r^2>\epsilon$
 - If $\delta > 0$ and $x = r + \delta$, then

$$2 - x^2 = 2 - r^2 - 2r\delta - \delta^2 > \epsilon - \delta(2r + \delta)$$

• If $\delta \leq 1$, then $2r + \delta \leq 2r + 1$ and therefore

$$2 - x^2 > \epsilon - \delta(2r + \delta) > \epsilon - \delta(2r + 1)$$

It follows that if

$$\delta < \min\left(1, \frac{\epsilon}{2r+1}\right),\,$$

then

$$2 - x^2 > 0$$
, i.e., $x^2 < 2$

 Therefore, x ∈ A and x > r, which means r is not an upper bound of A

$\sqrt{2} \in \mathbb{R}$ Part 2

 If r ∈ ℝ satisfies r > 0 and r² > 2, then r is an upper bound of A

If s ∈ A and s > 0, then s² < 2 < r², which implies that s < r
Let ε = r² - 2

• If $x = r - \delta$, where $0 < \delta < r$, then

$$x^2 - 2 = (r - \delta)^2 - 2 = \epsilon - 2\delta r + \delta^2 > \epsilon - 2r\delta$$

• Therefore, if

$$\delta < \min\left(r, \frac{\epsilon}{2r}\right),\,$$

then $x^2 > 2$

- It follows that x is an upper bound and x < r and therefore r is not the least upper bound
- It follows that $m = \sup A$ satisfies neither $m^2 < 2$ nor $m^2 > 2$
- Therefore, $m^2 = 2$

Upper and Lower Bounds

A nonempty set S ⊂ ℝ is bounded from above if there exists u ∈ ℝ such that

$$\forall s \in S, s \leq u$$

- The **least upper bound** of *S* is called the **supremum** and denoted sup(*S*)
- A nonempty set $S \subset \mathbb{R}$ is **bounded from below** if there exists $\ell \in \mathbb{R}$ such that

$$\forall s \in S, \ s \geq \ell$$

- The greatest lower bound of S is called the infimum and denoted inf(S)
- If a nonempty set S ⊂ ℝ is bounded from both above and below, it is called **bounded**