MATH-UA 325 Analysis I Fall 2023

Sequence of Reals Limit of a Sequence

Deane Yang

September 19, 2023

Courant Institute of Mathematical Sciences New York University

2.1 Sequence of Reals

- A sequence of reals is a function $s : \mathbb{N} \to \mathbb{R}$.
- Examples
 - $\forall n \in \mathbb{N}, s(n) = 1$
 - $\forall n \in \mathbb{N}, \ s(n) = 2n 1$ $\forall n \in \mathbb{N}, \ s(n) = \frac{1}{n}$
- Notation:
 - Instead of denoting the *n*-th element by s(n), we will denote it by s_n
 - The sequence itself will also be denoted by simply s_n
 - The meaning of the notation s_n on its own is ambiguous
 - Use the context to determine whether it represents the *n*-element of the sequence or the entire sequence itself

• A sequence is **bounded** if it is a bounded function, i.e.,

 $\exists B \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, |s_n| \leq B$

2.1 Limit of a Sequence

- We say that $a, b \in \mathbb{R}$ are equal within an error tolerance $\epsilon > 0$ if the distance between a and b is less than ϵ
 - $d(a, b) < \epsilon$
 - $|a-b| < \epsilon$
 - $a \epsilon < b < a + \epsilon$
- A sequence s₁, s₂, · · · ∈ ℝ has a limit L ∈ ℝ if the following holds:
 - For any error tolerance ε > 0, only finitely many elements in the sequence are not equal to L within the error tolerance ε
 - Equivalently, the sequence s_1, s_2, \ldots has a limit L if for any error tolerance $\epsilon > 0$, there exists $N_{\epsilon} > 0$ such that for every $n > N_{\epsilon}$, s_n is equal to L with the error tolerance ϵ
 - Equivalently, the sequence s_1, s_2, \ldots has a limit L if

 $\forall \epsilon > 0, \ \exists N_{\epsilon} \in \mathbb{N} \text{ such that } \forall n > N_{\epsilon}, \ d(s_n, L) < \epsilon.$

• The sequence

$$s_n = 1, \forall n \in \mathbb{N}$$

has the limit 1

• The sequence

$$s_n = n, \forall n \in \mathbb{N}$$

has no limit

• The sequence

 $s_n = (-1)^n, \ \forall n \in \mathbb{N}$

has no limit

Example of a Sequence With a Limit

• The sequence

$$s_n = \frac{1}{n}, \ \forall n \mathbb{N}$$

has the limit 0

• If
$$\epsilon = \frac{1}{100}$$
, then for any $n > 100$,

$$d(s_n,0)=d\left(\frac{1}{n},0\right)=\frac{1}{n}<\frac{1}{100}$$

• For any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\frac{1}{N_{\epsilon}} < \epsilon$$

• For any $n > N_{\epsilon}$,

$$d(s_n,0)=\frac{1}{n}<\frac{1}{N_{\epsilon}}<\epsilon$$

- If a sequence has a limit, it is called a **convergent** sequence
- If s_1, s_2, \ldots is a sequence with a limit *L*, we say that it **converges** to the limit *L*