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Square Root of Convergent Sequence is Convergent

e Suppose (s, : n > N) is a convergent sequence such that
VneN, s, >0 and

lim s, =1L
n—o0o

e We want to show that lim,_. \/Sp = V/L

e The error is

(Ve = VD)(VE + VL)
v/sn — VI| = ot VL

_lsn— L

C Vam VL

e The rest of the proof is a homework exercise



Convergence Tests

Consider a sequence (x, : n > np)

If x € R and (e, : n> ng) satisfy

lim e, =0and Vn > ng, |x — xs| < ey,
n—o0

then

lim x, = x
n—o0

Observe that a, > 0 for all n € N

For any € > 0, there exists N, € N such that

Vn> Ng, |xp— x| <ap=|a,—0| <e



Geometric Sequences (Part 1)

e Given ¢ > 0, consider the sequence
(c": n>neN)

e Ifc=1, then lim,nc" =1
o If c <1, then ¢" > ¢"1
e The sequence is bounded and decreasing and therefore
convergent
e If lim,_,o c” = x, then on one hand,

lim ¢! = x
n—oo
but on the other hand,
lim ¢"™' = lim cc" = c lim = cx
n— 00 n— oo n—00

e Therefore, 0 = x — cx = (1 — ¢)x, which, since 1 —c #0
implies that x =0



Geometric Sequences (Part 2)

If ¢ > 1, then ¢! < 1 and therefore

lim (c™1)" =0

n—o0

For any B > 0, there exists N > 0 such that

1
c "< B ie., B<c"

It follows that the sequence (¢” : n > 1) is unbounded

n

It follows that the sequence (¢" : n > 1) is divergent



Ratio Test for Sequences

Let (s, : n > ng) be a sequence
If there exists 0 < r < 1 and N € N such that

‘sn—&-l‘

Vn> N,
|Sn

s,

then limp—oo s, =0
If there exists r > 1 and NV € N such that

|Sn+1] > r

— I

Vn> N,

|Snl
then the sequence diverges
o If

||m |5n+1| . 17
n—oo |sp|

then the sequence can diverge or converge



Proof When r < 1

e If n > N, then which implies

[sn| [sn—1|  [sw1]
|Sn—1] [Sn—2] |sw|

[sn| = sl < r"Nlsw|

e For any € > 0, there exists N, € N such that

€
NE<

r —
snl

e Therefore, for any n > N, + N,

Isn| < r”_N|sN| < rN5]|sN| <e€



Proof When r > 1

e If n > N, then which implies

sol_Isncal | Jsweal

= 5N| > I’n—N‘SN|
’5n71’ |5n72| ‘SN|

|5n
e For any B > 0, there exists Ny, such that for any n > Ny g,
r "<

and therefore
r"> B

e It follows that, for any n > Ny /g + N,

|sn| > r"*N]sN\ > er/B|sN\ > Blsy|



