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Square Root of Convergent Sequence is Convergent

• Suppose (sn : n ≥ N) is a convergent sequence such that

∀n ∈ N, sn ≥ 0 and

lim
n→∞

sn = L

• We want to show that limn→∞
√
sn =

√
L

• The error is

|
√
sn −

√
L| =

∣∣∣∣∣(
√
sn −

√
L)(

√
sn +

√
L)

√
sn +

√
L

∣∣∣∣∣
=

|sn − L|
√
sn +

√
L

• The rest of the proof is a homework exercise
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Convergence Tests

• Consider a sequence (xn : n ≥ n0)

• If x ∈ R and (en : n ≥ n0) satisfy

lim
n→∞

en = 0 and ∀n ≥ n0, |x − xn| ≤ en,

then

lim
n→∞

xn = x

• Observe that an ≥ 0 for all n ∈ N

• For any ϵ > 0, there exists Nϵ ∈ N such that

∀n > Nϵ, |xn − x | ≤ an = |an − 0| < ϵ
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Geometric Sequences (Part 1)

• Given c > 0, consider the sequence

(cn : n ≥ n ∈ N)

• If c = 1, then limn→∞ cn = 1

• If c < 1, then cn > cn+1

• The sequence is bounded and decreasing and therefore

convergent

• If limn→∞ cn = x , then on one hand,

lim
n→∞

cn+1 = x

but on the other hand,

lim
n→∞

cn+1 = lim
n→∞

ccn = c lim
n→∞

= cx

• Therefore, 0 = x − cx = (1− c)x , which, since 1− c ̸= 0

implies that x = 0
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Geometric Sequences (Part 2)

• If c > 1, then c−1 < 1 and therefore

lim
n→∞

(c−1)n = 0

• For any B > 0, there exists N > 0 such that

c−n <
1

B
, i.e., B < cn

• It follows that the sequence (cn : n ≥ 1) is unbounded

• It follows that the sequence (cn : n ≥ 1) is divergent
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Ratio Test for Sequences

• Let (sn : n ≥ n0) be a sequence

• If there exists 0 < r < 1 and N ∈ N such that

∀n ≥ N,
|sn+1|
|sn|

≤ r ,

then limn→∞ sn = 0

• If there exists r > 1 and N ∈ N such that

∀n ≥ N,
|sn+1|
|sn|

≥ r ,

then the sequence diverges

• If

lim
n→∞

|sn+1|
|sn|

= 1,

then the sequence can diverge or converge
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Proof When r < 1

• If n > N, then which implies

|sn| =
|sn|
|sn−1|

|sn−1|
|sn−2|

· · · |sN+1|
|sN |

|sN | ≤ rn−N |sN |

• For any ϵ > 0, there exists Nϵ ∈ N such that

rNϵ <
ϵ

|sN |

• Therefore, for any n > Nϵ + N,

|sn| ≤ rn−N |sN | < rNϵ ||sN | < ϵ
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Proof When r > 1

• If n > N, then which implies

|sn| =
|sn|
|sn−1|

|sn−1|
|sn−2|

· · · |sN+1|
|sN |

|sN | ≥ rn−N |sN |

• For any B > 0, there exists N1/B such that for any n > N1/B ,

r−n <
1

B

and therefore

rn > B

• It follows that, for any n > N1/B + N,

|sn| ≥ rn−N |sN | > rN1/B |sN | > B|sN |
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