MATH-UA 325 Analysis I Fall 2023

Limit Supremum and Limit Infimum of Sequence

Deane Yang Updated October 3, 2023

Courant Institute of Mathematical Sciences New York University

Limit Superior of a Sequence

- Let $(s_n: n \ge n_0)$ be a bounded sequence
- For each $n \ge n_0$, let

 $a_n = \sup(s_k : k \ge n)$ and $b_n = \inf(s_k : k \ge n)$

• For each $n \ge n_0$, since

$$(s_k: k \ge n+1) \subset (s_k: k \ge n),$$

it follows that

 $a_n = \sup(s_k: k \ge n) \ge \sup(s_k: k \ge n+1) = a_{n+1}$

and therefore $(a_n: n \ge n_0)$ is a decreasing sequence

- $(a_n: n \ge n_0)$ is bounded, because any s_n is a lower bound
- The limit superior of $(s_n : n \ge n_0)$ is defined to be

$$\limsup_{n\to\infty} s_n = \lim_{n\to\infty} a_n$$

- Analogous story
- The sequence $(b_n : n \ge n_0$, where

$$b_n = \inf(s_k : k \ge n)$$

is a bounded increasing sequence

• The limit infimum of $(s_n : n \ge n_0)$ is defined to be

$$\liminf_{n\to\infty} s_n = \lim_{n\to\infty} b_n$$

$$\lim_{n \to \infty} \inf((-1)^n : n \ge n_0) = -1$$
$$\lim_{n \to \infty} \sup((-1)^n : n \ge n_0) = 1$$
$$\lim_{n \to \infty} \inf\left(\frac{(-1)^n}{n} : n \ge n_0\right) = 0$$
$$\lim_{n \to \infty} \sup\left(\frac{(-1)^n}{n} : n \ge n_0\right) = 0$$

• If $(x_n : n \ge n_0)$ is a bounded sequence, then

 $\liminf_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$

Proposition 2.3.5: A bounded sequence (x_n : n ≥ n₀) converges if and only if

 $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} s_n$

Proof

• If $a_n = \sup(x_k : k \ge n)$ and $b_n = \inf(x_k : k \ge n)$, then for each $n \ge n_0$,

$$b_n \leq x_n \leq a_n$$

• By assumption,

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}a_n$$

• By Squeeze Lemma, $(x_n : n \ge n_0)$ converges and

$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} x_n = \lim_{n\to\infty} a_n$$

lim inf and lim sup of a Subsequence

- Let (x_{nk} : k ≥ k₀) be a subsequence of a sequence (x_n : n ≥ n₀)
- For each $n \ge n_0$, let

 $a_n = \sup(x_k: k \ge n) \text{ and } a'_n = \sup(x_{n_j}: n_j \ge n)$

• Since $(x_{n_j}: n_j \ge n) \subset (x_k: k \ge n)$, it follows that

$$a'_n \leq a_n$$

Therefore,

$$\limsup_{k\to\infty} x_{n_k} = \lim_{n\to\infty} a'_n \le \lim_{n\to\infty} a_n = \limsup_{n\to\infty} x_n$$

It follows that

$$\liminf_{n \to \infty} x_n \le \liminf_{k \to \infty} x_{n_k} \le \limsup_{k \to \infty} x_{n_k} \le \limsup_{n \to \infty} x_n$$