MATH-UA 325 Analysis I Fall 2023

Completeness Via Cauchy Sequences Open and Closed Sets in \mathbb{R} Geometric Series

Deane Yang Updated October 16, 2023

Courant Institute of Mathematical Sciences New York University

Completeness Via Cauchy Sequences

- Completeness via supremum and infimum
 - Every subset $S \subset \mathbb{R}$ that is bounded from above has a least upper bound, denoted $\sup(S)$
 - Every subset $S \subset \mathbb{R}$ that is bounded from above has a greatest lower bound, denoted $\inf(S)$
- Completeness via Cauchy sequences
 - ullet Every Cauchy sequence in ${\mathbb R}$ converges to a limit in ${\mathbb R}$

Cauchy Sequence Has Limit ⇒ **Bounded Set Has Supremum**

- Proof is essentially same as Bolzano-Weierstrass
- Let $S \subset \mathbb{R}$ be a nonempty subset bounded from above
 - Assume *S* is infinite
- Construct two sequences $(a_n : n \ge 0)$ and $(b_n : n \ge 0)$ by induction
- n=0: Let $a_0 \in S$ and b_0 be an upper bound of S
- Inductive assumption: $a_n \in S$ and b_n is an upper bound for S
 - Let $c_n = \frac{1}{2}(a_n + b_n)$
 - If c_n is an upper bound for S, then let $a_{n+1} = a_n$ and $b_{n+1} = c_n$
 - Otherwise, there exists $a_{n+1} \in S$ such that $a_{n+1} > c_n$, and let $b_{n+1} = b_n$

Cauchy Sequence Has Limit \implies Bounded Set Has Supremum

- $(a_n: n \ge 0)$ is increasing, and $(b_n: n \ge 0)$ is decreasing
- $|b_n a_n| = 2^{-n}|b_0 a_0|$
- ullet For any $\epsilon>0$, there exists $\mathcal{N}_{\epsilon}\in\mathbb{N}$ such that

$$\forall n > N_{\epsilon}, |b_n - a_n| < 2^{-n}|b_0 - a_0| < \epsilon$$

• For any $j, k > N_{\epsilon}$ such that $j \leq k$,

$$a_j \leq a_k \leq b_k \leq b_j$$

and therefore

$$|a_j - a_k| \le |a_j - b_j| < \epsilon$$
 and $|b_j - b_k| < |a_j - b_j| < \epsilon$

 This implies both sequences are Cauchy and therefore have limits

$$a = \lim_{n \to \infty} a_n$$
 and $b = \lim_{n \to \infty} b_n$

4

Cauchy Sequence Has Limit ⇒ **Bounded Set Has Supremum**

• For any $n \ge 0$,

$$b-a \le b_n - a_n \le (b_0 - a_0)2^{-n}$$
,

which implies a = b

- b is an upper bound
 - For any $s \in S$ and $n \ge 0$,

$$s \leq b_n$$

Therefore,

$$\lim_{n\to\infty} s \le \lim_{n\to\infty} b_n = b$$

- b is the least upper bound
 - Let *c* < *b*
 - Since $\lim_{n\to\infty} a_n = b$, there exists $n \in \mathbb{N}$ such that

$$c < a_n \leq b$$

• Therefore, c is not an upper bound

Open and closed sets in $\mathbb R$

- A subset S ⊂ ℝ is closed if every Cauchy sequence in S
 converges to a limit in S
 - Examples:
 - The empty set
 - $\bullet \ \ \mathsf{A} \ \mathsf{point} \ \mathsf{in} \ \mathbb{R}$
 - [a, b], $[a, \infty)$, $(-\infty, a]$ for any $a, b \in \mathbb{R}$
 - · A finite union of closed sets
 - An infinite intersection of closed sets
- A subset $S \subset \mathbb{R}$ is **open** if for any $x \in S$, there exists $\delta > 0$ such that $(x \delta, x + \delta) \subset S$
 - Examples:
 - (a, b), (a, ∞) , $(-\infty, a)$ for any $a, b \in \mathbb{R}$
 - An infinite union of open sets
 - A finite intersection of open sets
- A set $S \subset \mathbb{R}$ is open if and only if $\mathbb{R} \backslash S$ is closed

Series

• Given a sequence $(x_n : n \ge n_0)$, consider the infinite sum

$$\sum_{n=n_0}^{\infty} x_n = x_{n_0} + x_{n_0+1} + \cdots,$$

which is also called a series

• The sequence of partial sums is $(s_n : n \ge n_0)$, where

$$s_n = x_{n_0} + \dots + x_n = \sum_{k=n_0}^n x_k$$

- The infinite sum is defined to be convergent if the sequence of partial sums is convergent
 - If so, we say that

$$\sum_{n=n_0}^{\infty} x_n = \lim_{n\to\infty} s_n$$

 If the sequence of partial sums diverges, then the series is divergent

Tails of Sequences and Series

• A **tail** of a sequence $(s_n : n \ge n_0)$ is a sequence

$$(s_n: n \geq N),$$

where N is some integer greater than n_0

- A sequence converges if and only if a tail does
- A tail of a series

$$\sum_{n=n_0}^{\infty} x_n$$

is a series

$$\sum_{n=N}^{\infty} x_n,$$

where N is some integer greater than n_0

A series converges if and only if a tail does

Geometric Series and Sum

• Geometric series: Given $r \in \mathbb{R}$, consider the series

$$1+r+r^2+\cdots=\sum_{k=0}^{\infty}r^k$$

• Basic algebraic formula:

$$1 - r^{N+1} = (1-r)(1+r+r^2+\cdots+r^N) = (1-r)\sum_{k=0}^{N} r^k$$

• Geometric sum:

$$\sum_{k=0}^{N} r^{k} = 1 + r + r^{2} + \dots + r^{N} = \frac{1 - r^{N+1}}{1 - r}$$

• Therefore,

$$\sum_{k=0}^{\infty} r^{k} = \lim_{N \to \infty} \sum_{k=0}^{N} r^{k} = \lim_{N \to \infty} \frac{1 - r^{N+1}}{1 - r}$$

Convergence of Geometric Series

- If |r| > 1, then geometric series is unbounded
- If |r| < 1, then

$$\lim_{n\to\infty}r^n=0,$$

and therefore

$$\sum_{k=0}^{\infty} r^k = \lim_{N \to \infty} \sum_{k=0}^{N} r^k = \lim_{N \to \infty} \frac{1 - r^{N-n+1}}{1 - r} = \frac{1}{1 - r}$$