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Product of Absolutely Convergent Series

• The product of two absolutely convergent series

∞∑
m=1

am and
N∑

n=1

bn,

is equal to the absolutely convergent sequence

∞∑
k=1

k∑
j=1

ajbk+1−j

2



Comparison Test

• If

∞∑
n=1

an and
N∑

n=1

bn,

are series such that for each n ∈ N, 0 ≤ an ≤ bn, then

• If
∞∑
n=1

bn converges, then so does
∞∑
n=1

an and

∞∑
n=1

an ≤
N∑

n=1

bn

• If
∞∑
n=1

an diverges, then so does
∞∑
n=1

bn
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Limit Comparison Test

• Let
∞∑
n=1

an and
∑N

n=1 bn be series where

∀n ∈ N, an, bn > 0

and

0 < lim
n→∞

an
bn

< ∞

• Either both series converge or both series diverge

• Note that it suffices to prove

∞∑
n=1

an converges ⇐⇒
N∑

n=1

bn converges
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Proof of Limit Comparison Test

• If
∞∑
n=1

bn converges, then it is Cauchy

• For any ϵ > 0, there exists Nϵ ∈ N such that

∀k > j > Nϵ,

k∑
n=j+1

bn < ϵ

• Let L = lim
n→∞

an
bn

• For any ϵ > 0, there exists Mϵ ∈ N such that

∀n > Mϵ, L− ϵ <
an
bn

< L+ ϵ

• Therefore, for all n > M1, an < (L+ 1)bn

• For any ϵ > 0 and k > j > max(Nϵ/(L+1),M1),

k∑
n=j+1

an < (L+ 1)
n∑

n=j+1

bn < ϵ

• It follows that
∑∞

n=1 an is Cauchy and converges 5



p-Series if p ≤ 1

• Given p ∈ Q, the p-series is

∞∑
n=1

1

np

• If p ≤ 1, then for each N ∈ N,

N∑
n=1

1

np
≥

N∑
n=1

1

n
,

which diverges
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p-Series if p > 1

• For each n ≥ 0, let

tn =
2n+1−1∑
k=2n

1

kp
=

1

(2n)p
+

1

(2n + 1)p
+ · · ·+ 1

(2(n + 2n − 1)p

• Observe that since tn has 2n decreasing terms,

tn ≤ 2n

(2n)p
=

(
1

2(p−1)

)n

• If p > 1, then
1

2p−1
< 1, and therefore

∞∑
n=0

(
1

2p−1

)n

converges

• By the comparison test,
∞∑
n=0

tn converges
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p-Series if p > 1

• For any N ∈ N, if M ∈ N satisfies N ≤ 2M+1 − 1, then

N∑
k=1

1

kp
≤

2M+1−1∑
k=1

1

kp
=

M∑
n=0

tn <

∞∑
n=0

tn

• It follows that the sequence of partial sums(
n∑

k=1

1

kp
: n ≥ 1

)

is bounded, increasing, and therefore convergent

• Therefore, the series
∞∑
k=1

1

kp
converges
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Example of Limit Comparison Test Using p-Series

• Consider the series
∞∑
n=1

(−1)n

n3/2 − n + 1

• Use the limit comparison test for
∞∑
n=1

1

n3/2 − n + 1
and

∞∑
n=1

1

n3/2

•

lim
n→∞

1
n3/2−n+1

1
n3/2

= lim
n→∞

n3/2

n3/2 − n + 1

= lim
n→∞

1

1− n−1/2 + n−3/2

= 1

• Since the second series converges, so does the first series

• Therefore, the original series is absolutely convergent
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Ratio Test for a Series

• Let
∑∞

n=n0
xn be a series such that

• For all n ≥ n0, xn ̸= 0

• If there exists N ≥ n0 and 0 < ρ < 1 such that for all n ≥ N,

|xn+1|
|xn|

≤ ρ,

then the series converges absolutely

• If there exists N ≥ n0 and ρ > 1 such that for all n ≥ N,

|xn+1|
|xn|

≥ ρ,

then the series diverges
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Proof of Ratio Test for Divergence

• If for all n ≥ N,
|xn+1|
|xn|

≥ ρ > 1,

then

|xn| ≥ ρ|xn−1| ≥ · · · ≥ ρN−n|xN |

• This implies that the sequence (xn : n ≥ n0) is unbounded

and therefore the series

∞∑
n=n0

xn

is divergent

11



Proof of Ratio Test for Convergence

• If for all n ≤ N,
|xn+1|
|xn|

≤ ρ < 1,

then

|xn| ≤ ρ|xn−1| ≤ · · · ≤ ρN−n|xN |

• Since
∞∑

n=N

ρN−n|xN | converges,

it follows by the comparison test that
∞∑

n=N

|xn| converges

• Therefore,
∞∑

n=n0

|xn| = |xn0 |+ · · ·+ |xN−1|+
∞∑

n=N

|xn|

converges

• It follows that the series
∞∑

n=n0

xn is absolutely convergent
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Example (Part 1)

• Given x ∈ R, consider the series

∞∑
n=1

n100xn

• If x = 0, then the series equals 0

• Let

sn = n100xn

• If x ̸= 0, then

|sn+1|
|sn|

=

∣∣∣∣(n + 1)100xn+1

n100xn

∣∣∣∣ = (1 + 1

n

)100

|x |
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Example (Part 2)

• Since

lim
n→∞

(
1 +

1

n

)100

= 1,

it follows that for any ϵ > 0, there exists Nϵ ∈ N such that

∀n > Nϵ, 1− ϵ <

(
1 +

1

n

)100

< 1 + ϵ

• If |x | < 1, then for any n > Nϵ,(
1 +

1

n

)100

|x | ≤ (1 + ϵ)|x |
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Example (Part 3)

• Choose ϵ > 0 small enough so that

(1 + ϵ)|x | < 1,

• I.e., given ρ such that 0 < |x | < ρ < 1, let

ϵ =
ρ

|x |
− 1

• It follows that for all n > Nϵ,

|sn+1|
|sn|

≤ ρ < 1

• By the ratio test, if |x | < 1, then

∞∑
n=1

n100xn =
∞∑
n=1

sn converges absolutely
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Splitting a Series into the Sum of Series

• A series

∞∑
n=1

xn

can be split into the sum of two series as follows

• Let S1,S2 ⊂ N be disjoint subsets such that S1 ∪ S2 = N

• The series can be written as

∞∑
n=1

xn =

∑
n∈S1

xn

+

∑
n∈S2

xn


• The series on the left is absolutely convergent if and only if

both series on the right are absolutely convergent
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