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Power Series

• Given x0 ∈ R, a power series centered at x0 is a series of the

form
∞∑
n=0

an(x − x0)
n = a0 + a1(x − x0) + a2(x − x0)

2 + · · ·

• For each x ∈ R, this series either converges or diverges
• If D ⊂ R is given by

D =

{
x ∈ R :

∞∑
n=0

an(x − x0)
n converges

}
,

then the power series defines a function f : D → R, where, for
each x ∈ D,

f (x) =
∞∑
n=0

an(x − x0)
n

• Usually, we will restrict D to where the power series converges

absolutely and define

D =

{
x ∈ R :

∞∑
n=0

an(x − x0)
n converges absolutely

} 2



Example: Geometric Power Series Centered at 0

• Recall that if −1 < r < 1
∞∑
n=0

rn converges absolutely to
1

1− r

• It follows that the power series (centered at 0)
∞∑
n=0

xn

is the function f : (−1, 1) → R, given by

f (x) =
∞∑
n=0

xn =
1

1− x

• Observe that the domain of f is (−1, 1), but the domain of

the function

x 7→ 1

1− x
is R\{1} 3



Example: Geometric Power Series Centered at 1

• The geometric series centered at x = 1 is

∞∑
n=0

(x − 1)n,

which converges absolutely if −1 < x − 1 < 1, i.e., 0 < x < 2

• It is equal to the function f : (0, 2) → R given by

f (x) =
1

1− (x − 1)
=

1

2− x
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Example

• Consider
∞∑
n=0

xn

n!

• If

sn =
xn

n!
,

then

lim
n→∞

|sn+1|
|sn|

= lim
n→∞

|x |n+1

(n + 1)!

n!

|x |n

=
|x |

n + 1

= 0

• By the ratio test, this power series converges absolutely for all

x ∈ R and defines a function f : R → R
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Radius of Convergence

• Apply the ratio test to the power series
∞∑
n=0

an(x − x0)
n

• If sn = an(x − x0)
n, then

lim
n→∞

|sn+1|
|sn|

= lim
n→∞

|an+1|
|an|

|x − x0|

=
|x − x0|

R
,

where
1

R
= lim

n→∞

|an+1|
|an|

• If x0 − R < x < x0 + R, then the power series converges

absolutely

• If x < x0 − R or x > x0 + R, then the power series diverges
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Discontinuity of a Function

• Given S ⊂ R, consider a function f : S → R

• If there exists x0 ∈ S and a sequence (xn : n ≥ 1) ⊂ S such

that

lim
n→∞

xn = x0, but lim
n→∞

f (xn) ̸= f (x0),

then f is discontinuous at x0

• Or f has a discontinuity at x0

• Example: The function f : R → R given by

∀x ∈ R, f (x) =

1 if x = 0

0 if x ̸= 0

has a discontinuity at 0
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Definition of a Continuous Function

• Given a S ⊂ R, a function f : S → R is continuous if it has

no discontinuities

• I.e., for each x0 ∈ S and sequence

(xn : n ≥ 1) such that lim
n→∞

xn = x0,

the following holds:

lim
n→∞

f (xn) = f (x0)

• Example: If S = {0, 1}, the function f : S → R given by

f (0) = −5 and f (1) = 17

is continuous

• In practice, S will almost always be a nonempty open interval

(a, b) or closed interval [a, b], where a < b
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Examples

• The function f : R → R given by

f (x) =

1 if x = 0

0 if x ̸= 0

is not continuous, because

lim
n→∞

1

n
= 0, but lim

n→∞
f

(
1

n

)
= 0 ̸= 1 = f (0)

• On the other hand, the restriction of f to R\{0},

f |R\{0} (x) = 0, ∀x ∈ R\{0}

is continuous
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Examples

• ∀x ∈ R, f (x) = 2x − 3 is continuous

• For each x0 ∈ R and sequence (xn : n ≥ 1) such that

lim
n→∞

xn = x0,

the following holds:

lim
n→∞

f (xn) = lim
n→∞

2xn − 3 = 2( lim
n→∞

xn)− 3 = 2x0 − 3 = f (x0)

• ∀x ∈ R, f (x) = x2 is continuous

• For each x0 ∈ R and sequence (xn : n ≥ 1) such that

lim
n→∞

xn = x0,

the following holds:

lim
n→∞

f (xn) = lim
n→∞

x2n = ( lim
n→∞

xn)
2 = x20 = f (x0)

10


