MATH-UA 325 Analysis I Fall 2023

Compact Subsets of $\mathbb R$

Deane Yang Updated November 15, 2023

Courant Institute of Mathematical Sciences New York University

Compact Subsets of $\ensuremath{\mathbb{R}}$

- A set S ⊂ R is (sequentially) compact if any sequence in S has a convergent subsequence whose limit is in S
- **Theorem:** A set $S \subset \mathbb{R}$ is compact if and only if it is closed and bounded
- \bullet Closed and bounded \implies compact
 - Any sequence in a bounded set S is bounded
 - By Bolzano-Weierstrass Theorem, it has a convergent subsequence
 - Since S is closed, the limit is also in S

 $\bullet \ \mathsf{Compact} \implies \mathsf{closed}$

- Given any Cauchy sequence (x_n : n ≥ 1) ⊂ S, it has a convergent subsequence with limit L ∈ S
- Therefore, $\lim_{n \to \infty} x_n = L \in S$
- Since this holds for any Cauchy sequence in *S*, it follows that *S* is closed
- $\bullet \ \mathsf{Compact} \implies \mathsf{bounded}$
 - Contrapositive: Unbounded \implies not compact
 - If S is unbounded, then there exists a sequence $(x_n: n \ge 1) \subset S$ such that for each $n \ge 1$, $|x_n| > n$
 - Such a sequence has no convergent subsequence

- Let $C \subset \mathbb{R}$ be compact
- Since C is bounded, there exist

 $b = \inf C$ and $B = \sup C$

• There exist sequences $(s_n: n \ge 1), (t_n: n \ge 1) \subset C$ such that

$$\lim_{n\to\infty} s_n = b \text{ and } \lim_{n\to\infty} t_n = B$$

• Since C is closed, $b, B \in C$