MATH-UA 325 Analysis I Fall 2023

Intermediate Value Theorem

Deane Yang

Updated November 9, 2023

Courant Institute of Mathematical Sciences New York University

Intermediate Value Theorem (Special Case)

Lemma

Let $f:[a,b] \to \mathbb{R}$ be a continuous function. If f(a) < 0 < f(b), then there exists $c \in (a,b)$ such that f(c) = 0.

Proof of Lemma

- Define sequences $(a_n : n \ge 0)$ and $(b_n : n \ge 0)$ by induction
- Let $a_0 = a$ and $b_0 = b$
- Given (a_n, b_n) , define (a_{n+1}, b_{n+1}) as follows:
- Let $c_n = \frac{a_n + b_n}{2} f$
 - If $f(c_n) < 0$, let $a_{n+1} = a_n$ and $b_{n+1} = c_n$
 - If $f(c_n) > 0$, let $a_{n+1} = c_n$ and $b_{n+1} = b_n$
- The sequence $(a_n: n \ge 0)$ is increasing and bounded from above by b
 - Therefore, it is convergent
- The sequence $(b_n: n \ge 0)$ is decreasing and bounded from below by a
 - Therefore, it is convergent

Proof, Continued

- For each n, $b_n a_n = \frac{b-a}{2^n}$
- Therefore,

$$(\lim_{n\to\infty} b_n) - (\lim_{n\to\infty} a_n) = \lim_{n\to\infty} (b_n - a_n)$$

$$= 0$$

Denote

$$c = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Proof, Continued

• Since *f* is continuous

$$\lim_{n\to\infty} f(a_n) = f(a_\infty) = f(c)$$
$$\lim_{n\to\infty} f(b_n) = f(b_\infty) = f(c)$$

• Since $\forall n \geq 0, f(a_n) \leq 0$,

$$f(c) = \lim_{n \to \infty} f(a_n) \le 0$$

and, since $\forall n \geq 0, f(b_n) \geq 0$,

$$f(c) = \lim_{n \to \infty} f(b_n) \ge 0$$

• It follows that f(c) = 0

Intermediate Value Theorem

Theorem

Let $f:[a,b] \to \mathbb{R}$ be a continuous function such that $f(a) \neq f(b)$. For any y between f(a) and f(b), there exists $x \in [a,b]$ such that f(x) = y

Proof of Intermediate Value Theorem

• Let $h:[a,b] \to \mathbb{R}$ by given by

$$h(x) = f(x) - y$$

- If f(a) < y < f(b), then h(a) = f(a) y < 0 and h(b) = f(b) y > 0
 - By lemma, there exists $x \in (a, b)$ such that h(x) = 0 and therefore f(x) = y
- If f(a) > y > f(b), then h(a) = f(a) y > 0 and h(b) = f(b) y > 0
 - By lemma, there exists $x \in (a, b)$ such that h(x) = 0 and therefore f(x) = y

Any Polynomial of Odd Degree Has At Least 1 Root

ullet Given any odd $d\in\mathbb{N}$ and $a_0,\ldots,a_{d-1}\in\mathbb{R}$, let

$$p(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0,$$

Observe that

$$p(x) = x^d \left(1 + \frac{a_{d-1}}{x} + \dots + \frac{a_0}{x^d}\right)$$

• If |x| > 1, then for any $p \ge 1$,

$$\frac{1}{|x|^p} < \frac{1}{|x|}$$

• Therefore, if |x|>1 and $b=\max(|a_0|,\ldots,|a_{d-1}|)$, then

$$\left| \frac{a_{d-1}}{x} + \dots + \frac{a_0}{x^d} \right| \le \frac{|a_{d-1}|}{|x|} + \dots + \frac{|a_0|}{|x^d|}$$
$$\le \frac{bd}{|x|},$$

Any Polynomial of Odd Degree Has At Least 1 Root

• It follows that if |x| > 1, then

$$1 - \frac{bd}{|x|} < 1 + \frac{a_{d-1}}{x} + \dots + \frac{a_0}{x^d} < 1 + \frac{bd}{|x|}$$

• So if |x| > bd, then

$$0 < 1 - \frac{bd}{|x|} < 1 + \frac{a_{d-1}}{x} + \dots + \frac{a_0}{x^d}$$

• Therefore, if t > bd, then $(-t)^d < 0$ and

$$p(-t) = t^d \left(1 + \frac{a_{d-1}}{t} + \dots + \frac{a_0}{t^d}\right) < 0$$

and

$$p(t) = t^d \left(1 + \frac{a_{d-1}}{t} + \dots + \frac{a_0}{t^d} \right) > 0$$

ullet By the Special Case of Intermediate Value Theorem, there exists $c\in (-t,t)$ such that

$$p(c) = 0.$$