MATH-UA 325 Analysis I Fall 2023

Properties of Continuous Functions

Deane Yang Updated November 16, 2023

Courant Institute of Mathematical Sciences New York University

- Let I be an open interval and $f: I \to \mathbb{R}$ be continuous
- If $S \subset I$ is open, then f(S) need not be open
 - Let $f:\mathbb{R} \to \mathbb{R}$ be a constant function and $S \subset \mathbb{R}$ be open

• Let
$$f(x) = x^2$$
 for all $x \in \mathbb{R}$ and $S = (-1, 1)$

• If $S \subset I$ is closed, then f(S) need not be closed

• Let
$$f(x) = \frac{1}{x}$$
 for all $x > 0$ and $S = [1, \infty)$

• If $S \subset I$ is bounded, then f(S) need not be bounded

• Let
$$f(x) = \frac{1}{x}$$
 and $S = (0, 1)$

Image of Compact Set by Continuous Function is Compact

- Let $C \subset \mathbb{R}$ be compact and $f : C \to \mathbb{R}$ be continuous
- Let $(y_n : n \ge 1) \subset f(C)$
- Since each $y_n \in f(C)$, there exists $x_n \in C$ such that $f(x_n) = y_n$
- Since (x_n : n ≥ 1) ⊂ C and C is compact, there exists a subsequence (x_{nk} : k ≥ 1) converging to a limit x₀ ∈ C
- Since *f* is continuous,

$$\lim_{k\to\infty}f(x_{n_k})=f(x_0)\in f(C)$$

- Therefore, the subsequence (y_{nk}: k ≥ 1) ⊂ f(C) converges to y₀ = f(x₀) ∈ f(C)
- Therefore, any sequence (y_n : n ≥ 1) ⊂ f(C) has a convergent subsequence whose limit is in f(C)
- It follows that f(C) is compact

Two Definitions of a Continuous Function

- f: S → ℝ is continuous if for any x₀ ∈ S and sequence (x_n: n ≥ 1) ⊂ S whose limit is x₀, the sequence (f(x_n): n ≥ 1) is convergent and converges to f(x₀)
- If *I* ⊂ ℝ is open, then *f* : *I* → ℝ is continuous if for any *ε* > 0, there exists δ > 0 such that

$$|x-x_0| < \delta \implies |f(x)-f(x_0)| < \epsilon,$$

i.e.,

$$x \in (x - \delta, x + \delta) \implies f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon)$$

Inverse Image of Open Set by Continuous Function

- Let $I \subset \mathbb{R}$ be open and $f: I \to \mathbb{R}$ be continuous
- If T ⊂ ℝ is open, then for any y₀ ∈ T, there exists ε > 0 such that

$$(y_0 - \epsilon, y_0 + \epsilon) \subset T$$

• Since f is continuous, there exists $\delta > 0$ such that

$$x \in (x_0 - \delta, x_0 + \delta) \implies f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon)$$

• Therefore, if $x_0 \in f^{-1}(T)$, then

$$\begin{aligned} x \in (x_0 - \delta, x_0 + \delta) \implies f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon) \\ \implies f(x) \in T \implies x \in f^{-1}(T) \end{aligned}$$

• Therefore, for any $x_0 \in f^{-1}(T)$, there exists $\delta > 0$ such that

$$(x_0 - \delta, x + 0 + \delta) \subset f^{-1}(T)$$

• Therefore, $f^{-1}(T)$ is open

Inverse Image of Open is Open \implies Continuous

• Let I be open and $f: I \to \mathbb{R}$ be a function such that

$$\mathit{O} \subset \mathbb{R}$$
 open $\implies f^{-1}(\mathit{O})$ open

- Let $x_0 \in I$
- For any $\epsilon > 0$, $(f(x_0) \epsilon, f(x_0) + \epsilon)$ is open
- By definition of inverse image, x₀ ∈ f⁻¹((f(x₀) − ε, f(x₀) + ε))
- By assumption, $f^{-1}((f(x_0) \epsilon, f(x_0) + \epsilon))$ is open
- Therefore, there exists $\delta > 0$ such that

$$(x_0 - \delta, x_0 + \delta) \subset f^{-1}((f(x_0) - \epsilon, f(x_0) + \epsilon))$$

• By definition of inverse image, it follows that

$$x \in (x_0 - \delta, x_0 + \delta) \implies f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon)$$

• Therefore, f is continuous at each $x_0 \in I$

Inverse Image of Closed Set by Continuous Function is Closed

- Let I be an open interval and $f: I \to \mathbb{R}$ be continuous
- If $S \subset I$ is closed, then $I \setminus S$ is open
- If f is continuous, $f^{-1}(I \setminus S)$ is open
- $f^{-1}(I \setminus S) \cap f^{-1}(S) = \emptyset$
 - If $x \in f^{-1}(S)$, then $f(x) \in S$ and therefore, $f(x) \notin I \setminus S$

•
$$f^{-1}(I \setminus S) \cup f^{-1}(S) = I$$

- Therefore, $I \setminus (f^{-1}(I \setminus S)) = f^{-1}(S)$
- Therefore,

$$S \subset I \text{ closed} \implies I \setminus S \text{ open}$$

 $\implies f^{-1}(I \setminus S) \text{ open}$
 $\implies f^{-1}(S) \text{ close}$