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Applications of Mean Value Theorem

• Let f : (a, b) → R be differentiable

• f ′ = 0 on (a, b) if and only if f is a constant function

• f is increasing on (a, b) ⇐⇒ f ′ ≥ 0 on (a, b)

• f is decreasing on (a, b) ⇐⇒ f ′ ≤ 0 on (a, b)

• f ′ > 0 on (a, b) =⇒ f is strictly increasing on (a, b)

• f ′ < 0 on (a, b) =⇒ f is strictly decreasing on (a, b)

• If c ∈ (a, b), f ′ ≥ 0 on (a, c) and f ′ ≤ 0 on (c , b), then c is an

absolute maximum on (a, b)

• If c ∈ (a, b), f ′ ≤ 0 on (a, c) and f ′ ≥ 0 on (c , b), then c is an

absolute minimum on (a, b)
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Higher Order Derivatives

• Given an open I ⊂ R and f : I → R, denote f (0) = f and for

each k ≥ 1,

f (k) = (f (k−1))′

• Definition: f is C k if f (0), . . . , f (k) are continuous
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Taylor Polynomials

• If f : I → R is kth order differentiable, its Taylor polynomial

of order k centered at x0 ∈ I is the polynomial of degree k ,

Pk(x) = a0(x − x0) + a1(x − x0) + · · ·+ ak(x − x0)
k

such that for each 0 ≤ j ≤ k ,

f (j)(x0) = P
(j)
k (x0)

• A straightforward calculation shows that

aj =
f (j)(x0)

j!

and therefore

Pk(x) = f (x0) + f ′(x0)(x − x0) + · · ·+ f (k)(x0)

k!
(x − x0)

k

=
k∑

j=0

f (j)(x0)

j!
(x − x0)

j
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Little o Notation

• Given x0 ∈ R and δ > 0, let

e : (x0 − δ, x0 + δ) → [0,∞), g : (x0 − δ, x0 + δ) → (0,∞)

be continuous functions

• We write

e(x) = o(g(x)) as x → x0 if lim
x→x0

e(x)

g(x)
= 0

• It implies that, as x → x0, f (x) is approaching 0 faster than

g(x)

• Given continuous functions f1, f2 : (x0 − δ, x0 + δ) → [0,∞),

f2(x) = f1(x) + o(g(x)) as x → x0

means

|f2(x)−f1(x)| = o(g(x)) as x → x0, i.e., lim
x→x0

|f2(x)− f1(x)|
g(x)

= 0
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Taylor’s Theorem

If f : (a, b) → R is k-th order differentiable and Pk is its k-th order

Taylor polynomial centered at x0 ∈ (a, b), then

f (x) = Pk(x) + o(|x − x0|k) as x → x0,

i.e.,

lim
x→x0

f (x)− Pk(x)|
|x − x0|k

= 0
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Taylor’s Theorem for k = 0

• If k = 0, then P0(x) = f (x0) and, since

lim
x→x0

|f (x)− f (x0)|
1

= 0,

it follows that

f (x) = f (x0) + o(1)
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Taylor’s Theorem for k = 1

• If k = 1, then if

R1(x) = f (x)− P1(x) = f (x)− f (x0)− f ′(x0)(x − x0),

it follows by the Mean Value Theorem, there exists cx

between x0 and x such that

R1(x)− R1(x0) = R ′(cx)(x − x0)

= (f ′(cx)− f ′(x0))(x − x0)

• Since R1(x0) = 0 and f ′ is continuous, it follows that

lim
x→x0

|f (x)− P1(x)|
|x − x0|

= lim
x→x0

|R1(x)− R1(x0)|
|x − x0|

= lim
x→x0

|f ′(cx)− f ′(x0)|

= 0
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Taylor’s Theorem for k = 2 (Part 1)

• Let

R2(x) = f (x)− P2(x)

= f (x)− f (x0)− f ′(x0)(x − x0)−
1

2
f ′′(x0)(x − x0)

2

• Observe that

R ′
2(x) = f ′(x)− f ′(x0)− f ′′(x0)(x − x0),

and R2(x0) = R ′
2(x0) = 0

• By the Mean Value Theorem twice, there exists cx between x

and x0such that

f (x)− P2(x) = R2(x)− R2(x0)

= R ′
2(cx)(x − x0)
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Taylor’s Theorem for k = 2 (Part 2)

• Since R ′
2(x0) = 0, it follows the Mean Value Theorem that

there exists dx between cx and x0 such that

R ′
2(cx) = R ′

2(cx)− R ′
2(x0)

= R ′′
2 (dx)(x − x0)

= (f ′′(dx)− f ′′(x0))(x − x0)

• Therefore,

f (x)− P2(x) = R ′
2(cx)(x − x0)

= (f ′′(dx)− f ′′(x0))(x − x0)
2

• Since f ′′ is continuous,

lim
x→x0

|f (x)− P2(x)|
|x − x0|2

= lim
x→x0

|f ′′(dx)− f ′′(x0)| = 0

• Therefore, f (x) = P2(x) + o(|x − x0|2)
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