MATH-UA 325 Analysis I Fall 2023

Applications of Mean Value Theorem Taylor Polynomials Taylor's Theorem

Deane Yang Updated November 29, 2023

Courant Institute of Mathematical Sciences New York University

Applications of Mean Value Theorem

- Let $f:(a,b) \to \mathbb{R}$ be differentiable
 - f' = 0 on (a, b) if and only if f is a constant function
 - f is increasing on $(a, b) \iff f' \ge 0$ on (a, b)
 - f is decreasing on $(a, b) \iff f' \le 0$ on (a, b)
 - f' > 0 on $(a, b) \implies f$ is strictly increasing on (a, b)
 - f' < 0 on $(a, b) \implies f$ is strictly decreasing on (a, b)
 - If c ∈ (a, b), f' ≥ 0 on (a, c) and f' ≤ 0 on (c, b), then c is an absolute maximum on (a, b)
 - If $c \in (a, b)$, $f' \leq 0$ on (a, c) and $f' \geq 0$ on (c, b), then c is an absolute minimum on (a, b)

• Given an open $I \subset \mathbb{R}$ and $f : I \to \mathbb{R}$, denote $f^{(0)} = f$ and for each $k \ge 1$,

$$f^{(k)} = (f^{(k-1)})^{\prime}$$

• Definition: f is C^k if $f^{(0)}, \ldots, f^{(k)}$ are continuous

Taylor Polynomials

 If f : I → ℝ is kth order differentiable, its Taylor polynomial of order k centered at x₀ ∈ I is the polynomial of degree k,

$$P_k(x) = a_0(x - x_0) + a_1(x - x_0) + \dots + a_k(x - x_0)^k$$

such that for each $0 \leq j \leq k$,

$$f^{(j)}(x_0) = P_k^{(j)}(x_0)$$

• A straightforward calculation shows that

$$a_j = \frac{f^{(j)}(x_0)}{j!}$$

and therefore

$$P_k(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$
$$= \sum_{j=0}^k \frac{f^{(j)}(x_0)}{j!}(x - x_0)^j$$

Little o Notation

• Given $x_0 \in \mathbb{R}$ and $\delta > 0$, let

 $e: (x_0 - \delta, x_0 + \delta) \rightarrow [0, \infty), \ g: (x_0 - \delta, x_0 + \delta) \rightarrow (0, \infty)$

be continuous functions

• We write

$$e(x) = o(g(x))$$
 as $x \to x_0$ if $\lim_{x \to x_0} \frac{e(x)}{g(x)} = 0$

- It implies that, as $x \to x_0$, f(x) is approaching 0 faster than g(x)
- Given continuous functions $f_1, f_2: (x_0 \delta, x_0 + \delta) \rightarrow [0, \infty)$,

$$f_2(x) = f_1(x) + o(g(x))$$
 as $x o x_0$

means

$$|f_2(x) - f_1(x)| = o(g(x))$$
 as $x o x_0$, i.e., $\lim_{x o x_0} rac{|f_2(x) - f_1(x)|}{g(x)} = 0$

If $f : (a, b) \to \mathbb{R}$ is k-th order differentiable and P_k is its k-th order Taylor polynomial centered at $x_0 \in (a, b)$, then

$$f(x)=P_k(x)+o(|x-x_0|^k)$$
 as $x o x_0,$

i.e.,

$$\lim_{x \to x_0} \frac{f(x) - P_k(x)|}{|x - x_0|^k} = 0$$

• If
$$k = 0$$
, then $P_0(x) = f(x_0)$ and, since

$$\lim_{x \to x_0} \frac{|f(x) - f(x_0)|}{1} = 0,$$

it follows that

 $f(x) = f(x_0) + o(1)$

Taylor's Theorem for k = 1

• If k = 1, then if

$$R_1(x) = f(x) - P_1(x) = f(x) - f(x_0) - f'(x_0)(x - x_0),$$

it follows by the Mean Value Theorem, there exists c_x between x_0 and x such that

$$R_1(x) - R_1(x_0) = R'(c_x)(x - x_0)$$

= $(f'(c_x) - f'(x_0))(x - x_0)$

• Since $R_1(x_0) = 0$ and f' is continuous, it follows that

$$\lim_{x \to x_0} \frac{|f(x) - P_1(x)|}{|x - x_0|} = \lim_{x \to x_0} \frac{|R_1(x) - R_1(x_0)|}{|x - x_0|}$$
$$= \lim_{x \to x_0} |f'(c_x) - f'(x_0)|$$
$$= 0$$

Taylor's Theorem for k = 2 (Part 1)

• Let

$$R_2(x) = f(x) - P_2(x)$$

= $f(x) - f(x_0) - f'(x_0)(x - x_0) - \frac{1}{2}f''(x_0)(x - x_0)^2$

Observe that

$$R'_{2}(x) = f'(x) - f'(x_{0}) - f''(x_{0})(x - x_{0}),$$

and $R_2(x_0) = R'_2(x_0) = 0$

• By the Mean Value Theorem twice, there exists c_x between x and x_0 such that

$$f(x) - P_2(x) = R_2(x) - R_2(x_0)$$

= $R'_2(c_x)(x - x_0)$

Taylor's Theorem for k = 2 (Part 2)

 Since R'₂(x₀) = 0, it follows the Mean Value Theorem that there exists d_x between c_x and x₀ such that

$$\begin{aligned} R_2'(c_x) &= R_2'(c_x) - R_2'(x_0) \\ &= R_2''(d_x)(x-x_0) \\ &= (f''(d_x) - f''(x_0))(x-x_0) \end{aligned}$$

• Therefore,

$$f(x) - P_2(x) = R'_2(c_x)(x - x_0)$$

= $(f''(d_x) - f''(x_0))(x - x_0)^2$

• Since *f*["] is continuous,

$$\lim_{x \to x_0} \frac{|f(x) - P_2(x)|}{|x - x_0|^2} = \lim_{x \to x_0} |f''(d_x) - f''(x_0)| = 0$$

• Therefore, $f(x) = P_2(x) + o(|x - x_0|^2)$