MATH-UA 325 Analysis I Fall 2023

Fundamental Theorems of Calculus

Deane Yang Updated December 11, 2023

Courant Institute of Mathematical Sciences New York University

Integral of Derivative (Part 1)

- Let f : [a, b] → ℝ be a continuous function that is differentiable on (a, b)
- Given any partition P = (x₀,...,x_n) of [a, b], it follows by the Mean Value Theorem that there exists C = (c₁,...,c_N) such that

$$f(x_k) - f(x_{k-1}) = f'(c_k)(x_k - x_{k-1}), \ \forall 1 \le k \le N$$

• This defines a Riemann sum for f' where

$$S_{f'}(P, C) = \sum_{k=1}^{N} f'(c_k))(x_k - x_{k-1})$$
$$= \sum_{k=1}^{N} f(x_k) - f(x_{k-1})$$
$$= f(b) - f(a)$$

Integral of Derivative (Part 2)

• This shows that for any partition P, there exists $C = (c_1, \ldots, c_N)$ such that

$$S_{f'}(P,C) = f(b) - f(a)$$

• On the other hand,

$$S_{f'}^{\min}(P) \leq S_{f'}(P,C) \leq S_{f'}^{\max}(P)$$

• It follows that for any partition P,

$$S_{f'}^{\min}(P) \leq f(b) - f(a) \leq S_{f'}^{\max}(P)$$

• This implies that

$$\frac{\int_{a}^{b} f'(x) \, dx \leq f(b) - f(a) \leq \overline{\int}_{a}^{b} f(x) \, dx$$

If $I \subset \mathbb{R}$ is open, $f : I \to \mathbb{R}$ is differentiable, and f' is Riemann integrable, then for any compact interval $[a, b] \subset I$,

$$\int_{x=a}^{x=b} f'(x) \, dx = f(b) - f(a)$$

- Let $f:(a,b) \to \mathbb{R}$ be Riemann integrable
- Given $x_0 \in (a, b)$, let $F: (a, b)
 ightarrow \mathbb{R}$ be the function given by

$$F(x) = \int_{t=x_0}^{t=x} f(t) \, dt$$

- Then F is continuous
- If f is continuous at $x \in (a, b)$, then
 - F is differentiable at x and F'(x) = f(x)
 - F is the unique antiderivative of f such that $F(x_0) = 0$

Proof (Part 1)

- Since f is Riemann integrable, it is bounded
 - There exists M > 0 such that

$$\forall x \in (a, b), |f(x)| \leq M$$

$$|F(x) - F(x_0)| = \left| \int_{x_0}^x f(t) \, dt \right|$$
$$\leq \left| \int_{x_0}^x |f(t)| \, dt \right|$$
$$< M|x - x_0|$$

• This implies that F is continuous at each $x_0 \in (a, b)$

Proof (Part 2)

• First, observe that for any $x, y \in (a, b)$,

$$\frac{F(y) - F(x)}{y - x} = \frac{1}{y - x} \int_{x}^{y} f(t) dt$$

• It follows that

$$\frac{F(y) - F(x)}{y - x} - f(x) = \frac{1}{y - x} \int_{x}^{y} f(t) - f(x) dt$$

 On the other hand, if f is continuous at x, then for any ε > 0, there exists δ > 0 such that

$$|y-x| < \delta \implies |f(y)-f(x)| < \epsilon$$

Proof (Part 3)

 Therefore, given x ∈ (a, b), there exists δ > 0 such that if 0 < |y − x| < δ,

$$\left|\frac{F(y) - F(x)}{y - x} - f(x)\right| = \left|\frac{1}{y - x}\int_{x}^{y} f(t) - f(x) dt\right|$$
$$\leq \frac{1}{|y - x|}\int_{x}^{y} |f(t) - f(y)| dt$$
$$\leq \epsilon$$

• In other words,

$$\lim_{y \to x} \frac{F(y) - F(x)}{y - x} - f(x) = 0$$

• I.e.,

F'(x) = f(x)

Recall that a function f : I → ℝ is continuous if for any
 ε > 0 and x₀ ∈ I, there exists δ_{x0} > 0 such that for any x₁ ∈ I,

$$|x_0 - x_1| < \delta \implies |f(x_0) - f(x_0)| < \epsilon$$

 A function f : I → ℝ is uniformly continuous if for any ε > 0, there exists δ > 0 such that for any x₀, x₁ ∈ I,

$$|x_0 - x_1| < \delta \implies |f(x_0) - f(x_1)| < \epsilon$$

Continuity on Compact Set Implies Uniformly Continuity

- Suppose $f : [a, b] \to \mathbb{R}$ is continuous but not uniformly continuous
- Not uniformly continuous means that there exists ε > 0 such that for any δ > 0, there exists x, y ∈ I such that

$$0 < |x - y| < \delta$$
 and $|f(x) - f(y)| > \epsilon$

• It follows that for each $n \in \mathbb{N}$, there exists x_n, y_n such that

$$a \leq x_n < y_n \leq b$$
 and $|f(x_n) - f(y_n)| > \epsilon$.

Continuous Implies Riemann Integrable

- Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous and therefore uniformly continuous
- Given a partition $P = (x_0, \ldots, x_N)$ of [a, b], let

$$w(P) = \max(x_1 - x_0, x_2 - x_1, \dots, x_N - x_{N-1})$$

• For any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x, y \in [a, b]$,

$$|x-y| < \delta \implies |f(x) - f(y)| < \epsilon$$

 For each 1 ≤ k ≤ N, m_k = f(c_{min}) and M_k = f(c_{max}) for some c_{min}, c_{max} ∈ [x_{k-1}, x_k]

• Since

$$|c_{\min} - c_{\max}| < |x_k - x_{k-1}| < \delta$$

it follows that

$$M_k - m_k = |f(c_{\max}) - f(c_{\min})| < \epsilon$$
 11