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Affine Functions on R

• A function f : R → R is affine (but often called linear) if the

change in output, depends only on the change in input and

not on the input itself

• I.e., for each change in input, ∆ ∈ R, there exists c(∆) ∈ R
such that

f (x +∆)− f (x) = c(∆), ∀x ∈ R

• If f is assumed to be differentiable, then

f ′(x) = lim
∆→0

f (x +∆)− f (x)

∆
= lim

∆→0

c(∆)

∆
= c ′(0)

• This implies that for any x ,∆ ∈ R,

f (x) = mx + b and f (x +∆)− f (x) = m∆,

where m = c ′(0) and b = f (0)
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Exponential Functions

• A function f : R → R is called exponential, if the

percentage or relative change in output depends only on

the change in input and not on the input itself

• I.e., for each change in input, ∆ ∈ R, there exists c(∆) ∈ R
such that

f (x +∆)− f (x)

f (x)
= c(∆), ∀x ∈ R (1)

• Exponential requires f (x) ̸= 0 for all x ∈ R
• If f is differentiable, then

f ′(x) = lim
∆→0

f (x +∆)− f (x)

∆
= lim

∆→0

c(∆)

∆
f (x) = c ′(0)f (x)

• Conclusion: If a function f is exponential, then there is

constant κ such that

f ′ = κf

3



Existence and Uniqueness of Exponential Functions

• Theorem: Given E0, κ ∈ R, there exists a unique

differentiable function E : R → R such that

E ′ = κE and E (0) = E0 (2)

• For each κ ∈ R, let eκ : R → R be the unique differentiable

function such that

e ′κ = κeκ and eκ(0) = 1

e ′κ = κeκ and eκ(0) = 1

• The standard exponential function is defined to be

e1 : R → R, which satisfies

e ′1 = e1 and e1(0) = 1
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Existence of Exponential Functions

• It suffices to prove the existence of the standard exponential

function e1

• For any κ,E0 ∈ R, if

E (t) = E0e1(κt), ∀t ∈ R,

then E ′ = κE and E (0) = E0

• Solve for e1 as a power series
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Existence of Standard Exponential Function

• If

e1(x) =
∞∑
k=0

akx
k and e ′1(x) =

∞∑
k=0

kakx
k−1,

then a0 = e1(0) = 1 and

e ′1(x)− e1(x) =
∞∑
k=1

kakx
k−1 −

∞∑
k=0

akx
k

=
∞∑
k=0

(k + 1)akx
k −

∞∑
k=0

akx
k

=
∞∑
k=0

((k + 1)ak+1 − κak)x
k

• Therefore, if e ′1 = e1, then for any k ≥ 0,

(k + 1)ak+1 = ak and, by induction, ak =
1

k!
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Power Series for e1 Converges Absolutely

• The power series for e1 is ∑
k=0

xk

k!

• If sk =
xk

k!
, then

lim
k→∞

∣∣∣∣sk+1

sk

∣∣∣∣ = lim
k→∞

|x |k+1

(k + 1)!

k!

|x |k

= lim
k→∞

|x |
k + 1

= 0,

• By the ratio test, this implies the power series converges

absolutely for all x ∈ R
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Definition of e1

• We now define the exponential function e1 to be

e1(x) =
∞∑
k=1

xk

k!
, ∀x ∈ R

• We now need to show that e1, as defined above, satisfies the

equation e ′1 = e1
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e ′1 = e1

• Observe that, since the power series for e1 converges

absolutely,

e1(y)− e1(x)

y − x
=

∞∑
k=1

1

k!

yk − xk

y − x

=
∞∑
k=1

1

k!
(yk−1 + yk−2x + · · ·+ xk−1)

• Therefore,

e ′1(x) = lim
y→x

e1(y)− e1(x)

y − x

= lim
y→x

∞∑
k=1

1

k!
(yk−1 + yk−2x + · · ·+ xk−1)

=
∑
k=1

kxk−1

k!
=

∑
k=0

xk

k!
= e1(x)
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Exponential Function is Always Positive (Part 1)

• Given E0 > 0 and κ > 0, let E : R → R

E ′ = κE and E (0) = E0

• If there exists t > 0 such that E (t) = 0, then let

T = inf{t : E (t) = 0}

• It follows that for any t ∈ [0,T ), E ′(t) = κE (t) > 0

• Therefore, E is strictly increasing on [0,T )

• Since E is continuous on R, it follows that E (T ) > E (0) > 0

• It follows that no such T exists
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Exponential Function is Always Positive (Part 2)

• If

f (t) =
1

E (−t)
,

then

f ′(t) = − 1

(E (−t))2
(−E ′(−t)) =

κE (−t)

(E (−t))2
= κf (t)

and

f (0) =
1

E0
> 0

• It follows that f (t) > 0 for all t ≥ 0 and therefore E (t) > 0

for all t ≤ 0
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Uniqueness of Exponential Functions

• Suppose E1,E2 both satisfy E1(0) = E2(0) = E0,

E ′
1 = κE1, and E ′

2 = κE2

• Then(
E1

E2

)′
=

E2E
′
1 − E1E

′
2

E 2
2

=
E1

E2

(
E ′
1

E1
− E ′

2

E2

)
=

E1

E2
(κ− κ) = 0

• Since E1(0) = E2(0), it follows that

E1

E2
= 1, i.e., E1 = E2
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Translation Invariance of Exponential Functions

• For each exponential function E and s ∈ R, consider the
function Es : R → R where for each t ∈ R,

Es(t) = E (s + t)

• Es is itself an exponential function, because

E ′
s = κEs , Es(0) = E (s)

• On the other hand, the function fs : R → R given by

fs(t) =
E (s)E (t)

E (0)
, ∀t ∈ R,

also satisfies

f ′s = κfs and fs(0) = E (s)

• By the uniqueness of exponential functions, Es = fs

• It follows that for any exponential function E and s, t ∈ R,

E (s + t)E (0) = E (s)E (t) 13



Relative Change in Output of Exponential Functions

• We now want to show that any exponential function E

satisfies the original property that the relative change in

output depends only on the change in input and not on the

input

• For any exponential function E and x ,∆ ∈ R,

E (x +∆)− E (x)

E (x)
=

E (x)E (∆)− E (x)

E (x)
= E (∆)− 1.

• Therefore, E satisfies (1) if

c(∆) = E (∆)− 1.

• It follows that if E is differentiable, then E satisfies (1) if and

only if it satisfies (2).
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Definition of e

• Define Euler’s number to be the constant

e = e1(1)
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e1(k) for k ∈ Z

• For any integer k and x ∈ R, it follows by translation

invariance,

e1(k) = e1((k − 1) + 1) = e1(k − 1)e1(1) = (e)e1(k − 1)

• Since e1(0) = 1, it follows by induction that for any

nonnegative integer k ,

∀x ∈ R and k ∈ Z, e1(k) = ek

• Since

1 = e1(0) = e1(k + (−k)) = e1(k)e1(−k) = eke1(−k),

it follows that for any nonnegative integer k ,

e1(−k) =
1

ek
= e−k
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e1(r) = er for r ∈ Q

• Any r ∈ Q can be written as

r =
p

q
where p, q ∈ Z, where q > 0

• it follows by translation invariance

ep = e1(p)

=

(
e1

(
p

q
+ · · ·+ p

q

))
= e1

(
p

q

)
· · · e1

(
p

q

)
=

(
e1

(
p

q

))q

• Therefore,

e1

(
p

q

)
= e

p
q , i.e.,e1(r) = er for any r ∈ Q
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Definition of ex

• For any r ∈ Q, e1(r) = er

• For any x , y ∈ R, e1(x + y) = e1(x)e1(y)

• e1(0) = 1

• Therefore, it is natural to write the function e1 as

ex = e1(x), ∀x ∈ R

• This is the definition of ex for any real x

• We still do not have a definition of the function ax , where

a ̸= e
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Properties of ex

• Since ex = e1(x),

ex > 0, ∀x ∈ R

e0 = 1

ex+y = exey , ∀x , y ∈ R
d

dx
ex = ex , ∀x ∈ R
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Exponential Function is Invertible

• Since e1 : R → (0,∞) is strictly increasing, it is injective

• Since e > 1,

lim
k→∞

e−k = 0,

and the sequence (ek : k ∈ Z+) is unbounded

• This implies that e1 : R → (0,∞) is surjective
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Natural Logarithm Function

• The natural logarithm function is defined to be the inverse

function of e1 and denoted

ln : (0,∞) → R

x 7→ ln(x)

• Basic properties

• Since e0 = 1,

ln(1) = 0

• Since ex+y = exeu,

ln(ab) = ln a+ ln b, ∀a, b ∈ (0,∞)
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