Courant Institute of Mathematical Sciences
Mathematics Colloquium
December 12, 2011

Speaker: Amit Singer, Princeton University

Title: Vector Diffusion Maps and the Connection Laplacian

Abstract:

Motivated by problems in structural biology, specifically cryo-electron microscopy, we introduce vector diffusion maps (VDM), a new mathematical framework for organizing and analyzing high dimensional data sets, 2D images and 3D shapes. VDM is a mathematical and algorithmic generalization of diffusion maps and other non-linear dimensionality reduction methods, such as LLE, ISOMAP and Laplacian eigenmaps. While existing methods are either directly or indirectly related to the heat kernel for functions over the data, VDM is based on the heat kernel for vector fields. VDM provides tools for organizing complex data sets, embedding them in a low dimensional space and interpolating and regressing vector fields over the data. In particular, it equips the data with a metric, which we refer to as the vector diffusion distance. In the manifold learning setup, where the data set is distributed on a low dimensional manifold M^d embedded in R^p, we prove the relationship between VDM and the connection-Laplacian operator for vector fields over the manifold.

Applications to structural biology (cryo-electron microscopy and NMR spectroscopy), computer vision and shape space analysis will be discussed. (Joint work with Hau-tien Wu.)