1 |
9/7–9/9 |
1.1 |
Functions and their Representations |
1.2 |
A catalog of essential functions |
2 |
9/13–9/16 |
1.3 |
The limit of a function |
1.4 |
Calculating Limits |
3 |
9/20–9/23 |
1.5 |
Continuity |
1.6 |
Limits involving Infinity |
4 |
9/27–9/30 |
2.1 |
Derivatives and rates of change |
2.2 |
The derivative as a function |
5 |
10/4–10/7 |
2.3 |
Basic differentiation formulas
|
2.4
|
The product and quotient rules |
2.5 |
The chain rule |
6
|
10/11–10/14 |
2.6 |
Implicit differentiation |
2.8 |
Linear approximations and
differentials |
7 |
10/18–10/21 |
Midterm Exam |
3.1 |
Exponential functions |
3.2 |
Inverse functions and logarithms |
8 |
10/25–10/28 |
3.3 |
Derivatives of Logarithmic and
Exponential
Functions |
3.4 |
Exponential growth and decay |
9 |
11/1–11/4 |
3.5 |
Inverse trigonometric functions |
3.7 |
Indterminate forms and L'Hôpital's
Rule |
10 |
11/8–11/11 |
4.1 |
Maximum and Minimum Values |
4.2 |
The Mean Value Theorem |
11 |
11/15–11/18 |
4.3 |
Derivatives and the shapes of curves |
4.4 |
Curve sketching |
12 |
11/22–11/24 |
4.5 |
Optimization problems |
13 |
11/29–12/2 |
4.7 |
Antiderivatives |
5.1 |
Areas and distances |
5.2 |
The definite integral |
14 |
12/6–12/9 |
5.3 |
Evaluating definite integrals |
5.4 |
The Fundamental Theorem of Calculus |
15
|
12/13–12/15 |
5.5
|
The Substitution Rule |
Catch up
and Review (if time permits)
|
F |
12/20 |
Final Exam: 12:00-1:50pm |