Analysis Seminar

Relaxed Energies, Defect measures and Minimal Currents

Speaker: Fanghua LIN, NYU

Location: Warren Weaver Hall 312

Date: Thursday, October 7, 2021, 11 a.m.


Energy minimizing harmonic maps from a three-ball into the two-sphere are well understood. A natural existence question for a continuous harmonic map with a suitably given Dirichlet boundary value or in a given homotopic class [a problem posed by R.Schoen] remains open.   We shall review several earlier results including the notions of the relaxed energies, minimal connections. The main goal of this lecture is to  describe related progress in higher dimensions. In particular, a proof of  the relaxed energy formula proposed by Brezis-Mironescu recently will be explained.