Books
  • S. Serfaty, Lectures on Coulomb and Riesz gases, to appear in the AMS Colloquium series.
  • S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lectures in Advanced Mathematics, 21, Eur. Math. Soc., 2015. link pdf
  • E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol 70, Birkhauser, (2007). link | Erratum (replacement for pages 148-151)
Selected expository papers
  • S. Serfaty, Systems of points with Coulomb interactions, Proceedings of the 2018 International Congress of Mathematicians, Rio de Janeiro, Brazil. link
  • S. Serfaty, ICM lecture sampler, Notices of the AMS 65 no. 7, (2018). 787-788. link
  • S. Serfaty, Microscopic description of Log and Coulomb gases, Proceedings of the 2017 Park City Summer school, IAS, 2018. pdf
  • S. Serfaty, Systems of points with Coulomb interactions, Gazette des mathématiciens 157, EMS Newsletter 110, (2018). French version | English version
  • S. Serfaty, Mean Field Limits for Ginzburg-Landau Vortices, Séminaire Laurent Schwartz - Equations aux dérivées partielles et applications, année 2015-2016, Exp. No. III, Ecole Polytech, 2017. pdf
  • S. Serfaty, Large Systems with Coulomb interactions: Variational Study and Statistical mechanics, Portugaliae Math. 73, No. 4 (2016), 247-278. pdf
  • S. Serfaty, Ginzburg-Landau vortices, Coulomb Gases and Abrikosov lattices, Comptes-Rendus Physique, Vol 15, (2014), No. 6. pdf
  • S. Serfaty, Lagrange and the calculus of variations, Lettera Matematica 2 ( 2014), Volume 2, Issue 1-2, 39-46. link
  • S. Serfaty, La supraconductivité, in Mathématiques, l'explosion continue, SMAI (2013). pdf
  • S. Serfaty, Lois de conservation et régularité par compensation pour les systèmes antisymétriques et les surfaces de Willmore (d'après Tristan Rivière). Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012-1026. Astérisque No. 339 (2011), Exp. No. 1024, ix, 357-370. pdf
  • E. Sandier, S. Serfaty, Vortex patterns in Ginzburg-Landau minimizers (with E. Sandier). XVIth International Congress on Mathematical Physics, 246-264, World Sci. Publ., 2010. pdf
  • R. V. Kohn, S. Serfaty, Second-order PDE's and deterministic games. ICIAM 07, 6th International Congress on Industrial and Applied Mathematics, 239-249, Eur. Math. Soc., Zurich, 2009. pdf
  • S. Serfaty, Vortices in the Ginzburg-Landau model of superconductivity, Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, vol III, 267-290, Eur. Math. Soc., 2006.
  • S. Serfaty, Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics. Topics on concentration phenomena and problems with multiple scales, 267-292, Lect. Notes Unione Mat. Ital., 2, Springer, 2006. link
  • E. Sandier, S. Serfaty, Vortices for Ginzburg-Landau Equations: With Magnetic Field Versus Without, in Noncompact Problems at the Intersection of Geometry, Analysis and Topology, Proceedings of the Brezis-Browder Conference on Noncompact Variational Problems and General Relativity, A. Bahri, S. Klainerman, and M. Vogelius, Eds, Contemporary Mathematics, 350, (2004).
Preprints
  1. L. Peilen, S. Serfaty, Local Laws and Fluctuations for Super-Coulombic Riesz Gases. pdf
  2. E. Hess-Childs, M. Rosenzweig, S. Serfaty, A sharp commutator estimate for all Riesz modulated energies. pdf
  3. C. Román, E. Sandier, S. Serfaty, Vortex lines interaction in the three-dimensional magnetic Ginzburg--Landau model. pdf
  4. J. Boursier, S. Serfaty, Multipole and Berezinskii-Kosterlitz-Thouless Transitions in the Two-component Plasma. pdf
  5. J. Boursier, S. Serfaty, Dipole Formation in the Two-Component Plasma. pdf
Articles in journals
  1. M. Rosenzweig, S. Serfaty, The Lake equation as a supercritical mean-field limit. J. Éc. polytech. Math. 12 (2025), 1019–1068. pdf
  2. A. Chodron de Courcel, M. Rosenzweig, S. Serfaty, The attractive Log Gas: Stability, Uniqueness, and Propagation of Chaos. Commun. Am. Math. Soc. 5 (2025), 695–773 pdf
  3. M. Rosenzweig, S. Serfaty, Sharp commutator estimates of all order for Coulomb and Riesz modulated energies. Comm. Pure Appl. Math. 79 (2026), no. 2, 207–292. pdf
  4. M. Rosenzweig, S. Serfaty, Relative entropy and modulated free energy without confinement via self-similar transformation. To appear in Revista Matemática Iberoamericana. pdf
  5. M. Rosenzweig, S. Serfaty, Modulated logarithmic Sobolev inequalities and generation of chaos, Annales Fac. Sciences Toulouse Math. (6) 34 (2025), no. 1, 107–134. pdf
  6. A. Chodron de Courcel, M. Rosenzweig, S. Serfaty, Sharp uniform-in-time mean-field convergence for singular periodic Riesz flows, Annales IHP, Analyse non linéaire, 42 (2025), no. 2, 391–472. pdf
  7. C. Román, E. Sandier, S. Serfaty, Bounded vorticity for the 3D Ginzburg-Landau model and an isoflux problem, Proc. Lond. Math. Soc. (3) 126 (2023), no. 3, 1015-1062. pdf
  8. M. Rosenzweig, S. Serfaty, Global-in-time mean-field convergence for singular Riesz-type diffusive flows, Annals Appl. Proba, 2023, Vol. 33, No. 2, 754-798 pdf
  9. M. Goldman, B. Merlet, M. Pégon, S. Serfaty, Compactness and structure of zero-states for unoriented Aviles-Giga functionals, J. Inst. Math. Jussieu. 23 (2024), no. 2, 941–982. pdf
  10. S. Serfaty, Gaussian Fluctuations and Free Energy Expansion for 2D and 3D Coulomb Gases at Any Temperature, Annales IHP, Probabilités et Statistiques, 59 (2023), no. 2, 1074–1142. pdf
  11. Q. H. Nguyen, M. Rosenzweig, S. Serfaty, Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise, Ars Inveniendi Analytica (2022), Paper No. 4, 45 pp. pdf
  12. S. Armstrong, S. Serfaty, Thermal approximation of the equilibrium measure and obstacle problem, Annales Fac. Sciences Toulouse (6) 31 (2022), no. 4, 1085-1110. pdf
  13. S. Armstrong, S. Serfaty, Local Laws and Rigidity for Coulomb Gases at any Temperature, Ann. Proba. 49 (2021), No. 1, 46-121. pdf
  14. S. Serfaty (appendix with M. Duerinckx), Mean Field Limit for Coulomb-Type Flows, Duke Math. J. 169 (2020), No. 15, 2887-2935. pdf
  15. M. Petrache, S. Serfaty, Crystallization for Coulomb and Riesz Interactions as a consequence of the Cohn-Kumar Conjecture, Proc. AMS 148 (2020), 3047-3057. pdf
  16. M. Duerinckx, S. Serfaty, Mean-Field dynamics for Ginzburg-Landau vortices with pinning and applied force, Annals of PDE 4 (2018), no. 2, art. 19, 172 pp. pdf
  17. F. Bekerman, T. Leblé, S. Serfaty, CLT for Fluctuations of Beta-Ensembles with General Potential, Elec. J. Proba, 23 (2018), paper no. 115, 31 pp. pdf
  18. S. Serfaty, J. Serra, Quantitative Stability of the Free Boundary in the Obstacle Problem, Analysis and PDE, 11, No. 7, (2018), 1803-1839. pdf
  19. S. Conti, M. Goldman, F. Otto, S. Serfaty, A branched transport limit of the Ginzburg-Landau functional, J. Ecole Polytech. 5 (2018) 317-375. link
  20. T. Leblé, S. Serfaty, Fluctuations of Two-Dimensional Coulomb Gases, Geom. Funct. Anal. (GAFA), 28, No. 2 (2018) 443-508. pdf
  21. D. Hardin, T. Leblé, E. Saff, S. Serfaty, Large Deviations Principle for Hypersingular Riesz Gases, Constructive Approx. 48, No. 1, (2018) 61-100. pdf
  22. L. Berlyand, E. Sandier, S. Serfaty, A Two-Scale Gamma-Convergence Approach for Random Non-Convex Homogenization, Calc. Var. PDE, 56 (2017), no. 6, art 156, 35pp. pdf
  23. T. Leblé, S. Serfaty, Large Deviation Principle for Empirical Fields of Log and Riesz Gases, Inventiones Math. 210 (2017), No 3, 645-757. pdf
  24. S. Serfaty, Mean Field Limits of the Gross-Pitaevskii and Parabolic Ginzburg-Landau Equations, J. Amer. Math. Soc., 30 (2017), No. 3, 713-768. pdf
  25. T. Leblé, S. Serfaty, O. Zeitouni (appendix by Wei Wu), Large Deviations for the Two-Dimensional Two-Component Plasma, Comm. Math. Phys. 350 (2017), no. 1, 301-360. pdf
  26. S. Conti, F. Otto, S. Serfaty, Branched Microstructures in the Ginzburg-Landau Model of Type-I Superconductors, SIAM J. Math Anal, 48 (2016), No. 4, 2994-3034. pdf
  27. M. Petrache, S. Serfaty, Next Order Asymptotics and Renormalized Energy for Riesz Interactions, J. Institut Math. Jussieu, 16 (2017) No. 3, 501-569. pdf
  28. E. Sandier, S. Serfaty, 1D Log Gases and the Renormalized Energy: Crystallization at Vanishing Temperature, Proba. Theor. Rel. Fields, 162, no 3, (2015), 795-846. pdf
  29. N. Rougerie, S. Serfaty, Higher Dimensional Coulomb Gases and Renormalized Energy Functionals, Comm. Pure Appl. Math. 69 (2016), 519-605. pdf
  30. E. Sandier, S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, Annals of Proba, 43, no 4, (2015), 2026-2083. pdf
  31. S. Rota Nodari, S. Serfaty, Renormalized Energy Equidistribution and Local Charge Balance in 2D Coulomb Systems, Inter. Math. Research Notices (2015), no. 11, 3035-3093. pdf
  32. S. Armstrong, S. Serfaty, O. Zeitouni, Remarks on a constrained optimization problem for the Ginibre ensemble, Potential Anal., 41, no 3, (2014), 945-958 pdf
  33. D. Goldman, C. Muratov, S. Serfaty, The Gamma-limit of the two-dimensional Ohta-Kawasaki functional. Part II: Droplet arrangement via the Renormalized Energy, Arch. Ration. Mech. Anal. 212 (2014), no. 2, 445-501 pdf
  34. S. Serfaty, Ginzburg-Landau vortices, Coulomb gases, and Renormalized Energies, J. Stat. Phys. 154 (2013), no. 3, 660-680. pdf
  35. M. Lewin, P.T. Nam, S. Serfaty, J.P. Solovej, Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. 68 (2015), no 3, 413-471. pdf
  36. D. Goldman, C. Muratov, S. Serfaty, The Gamma-limit of the two-dimensional Ohta-Kawasaki functional. Part I: Droplet density, Arch. Ration. Mech. Anal. 210 (2013), no. 2, 581-613. pdf
  37. N. Rougerie, S. Serfaty, J. Yngvason, Quantum Hall phases and plasma analogy in rotating trapped Bose gases, J. Stat. Phys. 154 (2014), no. 1-2, 2-50. pdf
  38. N. Rougerie, S. Serfaty, J. Yngvason, Quantum Hall states of bosons in rotating anharmonic traps, Phys. Rev. A, 87, (2013), 023618. pdf
  39. S. Serfaty, J. L. Vazquez, A Mean Field Equation as Limit of Nonlinear Diffusions with Fractional Laplacian Operators, Calc Var. PDE 49, (2014), no. 3-4, 1091–1120. pdf
  40. A. Borodin, S. Serfaty, Renormalized Energy Concentration in Random Matrices, Comm. Math. Phys., 320, No 1, (2013), 199-244. pdf
  41. E. Sandier, S. Serfaty, From the Ginzburg-Landau Model to Vortex Lattice Problems, Comm. Math. Phys. 313 (2012), 635-743. pdf
  42. A. Contreras, S. Serfaty, Large Vorticity Stable Solutions to the Ginzburg-Landau Equations, Indiana Univ. Math. J. 61 (2012), 1737-1763. pdf
  43. D. Henao, S. Serfaty, Energy estimates and cavity interaction for a critical-exponent cavitation model, Comm. Pure Appl. Math. (2012), 1-74 pdf
  44. S. Serfaty, I. Tice, Lorentz Space Estimates for the Coulombian Renormalized Energy, Comm. Contemp Math, 14, (2012), No 4, 1250027. pdf
  45. S. Serfaty, I. Tice, Ginzburg-Landau vortex dynamics with pinning and strong applied currents, Arch. Rat. Mech. Anal., 201, No 2 (2011), 413-464. pdf
  46. E. Sandier, S. Serfaty, Improved lower bounds for Ginzburg-Landau energies via mass displacement, Analysis & PDE 4-5 (2011), 757-795. pdf
  47. L. Ambrosio, E. Mainini, S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices, Annales IHP Anal. non lin. 28, No 2, (2011), 217-246. pdf
  48. S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, A, 31, No 4, (2011), 1427-1451, special issue in honor of De Giorgi and Stampacchia. pdf
  49. C. Imbert, S. Serfaty, Repeated games for eikonal equations, integral curvature flows and non-linear parabolic integro-differential equations, Disc. Cont. Dyn. Systems- A, 29, No 4, (2011), 1517-1552. pdf
  50. R. V. Kohn, S. Serfaty, A deterministic-control based approach to fully nonlinear parabolic and elliptic equations, Comm. Pure Appl. Math., 63, (2010), 1298-1350. pdf
  51. G. Francfort, N. Q. Le, S. Serfaty, Critical Points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case, ESAIM: COCV 15 (2009), 576-598. pdf
  52. S. Serfaty, I. Tice, Lorentz Space Estimates for the Ginzburg-Landau Energy, J. Func. Anal. 254 (2008), No 3, 773-825. pdf
  53. A. Aftalion, S. Serfaty, Lowest Landau level approach in superconductivity for the Abrikosov lattice close to H_c2, Selecta Math. 2,13, (2007). pdf
  54. L. Ambrosio, S. Serfaty, A gradient-flow approach for an evolution problem arising in superconductivity, Comm. Pure Appl. Math. 61, (2008), No 11, 1495-1539. pdf
  55. S. Serfaty, Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow, part II: The dynamics, J. Eur. Math Society, 9, No 3, (2007), 383-426. pdf
  56. S. Serfaty, Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow, part I: Study of the perturbed Ginzburg-Landau equation, J. Eur. Math Society , 9, No 2, (2007), 177-217. pdf
  57. R. V. Kohn, S. Serfaty, A deterministic-control based approach to motion by curvature, Comm. Pure Appl. Math, 59, No. 3, (2006), 344-407. pdf
  58. S. Serfaty, Stability in 2D Ginzburg-Landau passes to the limit, Indiana Univ. Math. J., 54, No. 1, (2005), 199-222. pdf
  59. E. Sandier, S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math, 57, No 12, (2004), 1627-1672. pdf
  60. E. Sandier, S. Serfaty, A product-estimate for Ginzburg-Landau and corollaries, J. Func. Anal., 211, No 1, (2004), 219-244. pdf
  61. E. Sandier, S. Serfaty, A product estimate for Ginzburg-Landau and application to the gradient-flow, Compte Rendus de l'Académie des Sciences, 336, (2003), 997-1002.
  62. E. Sandier, S. Serfaty, The decrease of bulk-superconductivity near the second critical field in the Ginzburg-Landau model, SIAM J. Math Anal., 34, No 4, (2003), 939-956. pdf
  63. F. Alouges, T. Rivière, S. Serfaty, Neel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations, ESAIM : COCV, 8, volume dedicated to Jacques-Louis Lions, (2002), 31-68. pdf
  64. E. Sandier, S. Serfaty, Ginzburg-Landau Minimizers Near the First Critical Field Have Bounded Vorticity, Calc of Var PDE , 17, 1 (2003), 17-28. pdf
  65. E. Sandier, S. Serfaty, Limiting Vorticities for the Ginzburg-Landau Equations, Duke Math. J., 117, No 3, (2003), 403-446. pdf
  66. T. Rivière, S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to micromagnetics, Comm PDE, 28, No 1 and 2, (2003), 249-269. pdf
  67. H. Brezis, S. Serfaty, A variational formulation for the two-sided obstacle problem with measure data, Comm. Contemp. Math, 4, No 2, (2002), 357-374. pdf
  68. S. Serfaty, On a Model of Rotating Superfluids, ESAIM: Controle, Opt. et Calcul des Variations, 6, (2001), 201-238. pdf
  69. T. Rivière, S. Serfaty, Limiting Domain-Wall Energy for a Problem Related to Micromagnetics, Comm. Pure Appl, Math., 54, No3, (2001), 294-338. pdf
  70. A. Aftalion, E. Sandier, S. Serfaty, Pinning Phenomena in the Ginzburg-Landau model of Superconductivity, J. Math. Pures Appl., 80, No 3, (2001), 339-372. pdf
  71. E. Sandier, S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, Annales Scientifiques de l'ENS, 4e Ser, 33, (2000), 561-592. pdf
  72. E. Sandier, S. Serfaty, On the Energy of Type-II Superconductors in the Mixed Phase, Reviews Math. Physics, 12, No 9, (2000), 1219-1257. pdf
  73. E. Sandier, S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field, Annales IHP, Analyse non linéaire, 17, No. 1, (2000), 119-145. link
  74. S. Serfaty, Stable Configurations in Superconductivity : Uniqueness, Multiplicity and Vortex-Nucleation, Arch. Rat. Mech. Anal., 149, (1999), 329-365. link
  75. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part II, Comm. Contemp. Math., 1, No. 3, (1999), 295-333. link
  76. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part I, Comm. Contemp. Math., 1 , No. 2, (1999), 213-254. link
  77. S. Serfaty, Solutions stables de l'équation de Ginzburg-Landau en présence de champ magnétique, Compte Rendus de l'Académie des Sciences, tome 326, No. 8, série I, (1998), 949-954.