Monograph
Lecture notes
  • S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lectures in Advanced Mathematics, 21, Eur. Math. Soc., 2015. link pdf
  • S. Serfaty, Microscopic description of Log and Coulomb gases, Proceedings of the 2017 Park City Summer school, IAS, 2018. pdf
  • S. Serfaty, Lectures on Coulomb and Riesz gases, link
Selected expository papers
  • S. Serfaty, Systems of points with Coulomb interactions, Proceedings of the 2018 International Congress of Mathematicians, Rio de Janeiro, Brazil. link
  • S. Serfaty, ICM lecture sampler, Notices of the AMS 65 no. 7, (2018). 787-788. link
  • S. Serfaty, Systems of points with Coulomb interactions, Gazette des mathématiciens 157, EMS Newsletter 110, (2018). French version | English version
  • S. Serfaty, Mean Field Limits for Ginzburg-Landau Vortices, Séminaire Laurent Schwartz - Equations aux dérivées partielles et applications, année 2015-2016, Exp. No. III, Ecole Polytech, 2017. pdf
  • S. Serfaty, Large Systems with Coulomb interactions: Variational Study and Statistical mechanics, Portugaliae Math. 73, No. 4 (2016), 247-278. pdf
  • S. Serfaty, Ginzburg-Landau vortices, Coulomb Gases and Abrikosov lattices, Comptes-Rendus Physique, Vol 15, (2014), No. 6. pdf
  • S. Serfaty, Lagrange and the calculus of variations, Lettera Matematica 2 ( 2014), Volume 2, Issue 1-2, 39-46. link
  • S. Serfaty, La supraconductivité, in Mathématiques, l'explosion continue, SMAI (2013). pdf
  • S. Serfaty, Lois de conservation et régularité par compensation pour les systèmes antisymétriques et les surfaces de Willmore (d'après Tristan Rivière). Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012-1026. Astérisque No. 339 (2011), Exp. No. 1024, ix, 357-370. pdf
  • E. Sandier, S. Serfaty, Vortex patterns in Ginzburg-Landau minimizers (with E. Sandier). XVIth International Congress on Mathematical Physics, 246-264, World Sci. Publ., 2010. pdf
  • R. V. Kohn, S. Serfaty, Second-order PDE's and deterministic games. ICIAM 07, 6th International Congress on Industrial and Applied Mathematics, 239-249, Eur. Math. Soc., Zurich, 2009. pdf
  • S. Serfaty, Vortices in the Ginzburg-Landau model of superconductivity, Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, vol III, 267-290, Eur. Math. Soc., 2006.
  • S. Serfaty, Gamma-convergence of gradient flows and applications to Ginzburg-Landau vortex dynamics. Topics on concentration phenomena and problems with multiple scales, 267-292, Lect. Notes Unione Mat. Ital., 2, Springer, 2006. link
  • E. Sandier, S. Serfaty, Vortices for Ginzburg-Landau Equations: With Magnetic Field Versus Without, in Noncompact Problems at the Intersection of Geometry, Analysis and Topology, Proceedings of the Brezis-Browder Conference on Noncompact Variational Problems and General Relativity, A. Bahri, S. Klainerman, and M. Vogelius, Eds, Contemporary Mathematics, 350, (2004).
Preprints
  1. J. Boursier, S. Serfaty, Dipole Formation in the Two-Component Plasma. pdf
  2. M. Rosenzweig, S. Serfaty, The Lake equation as a supercritical mean-field limit. pdf
  3. A. Chodron de Courcel, M. Rosenzweig, S. Serfaty, The attractive Log Gas: Stability, Uniqueness, and Propagation of Chaos. pdf
  4. M. Rosenzweig, S. Serfaty, Sharp commutator estimates of all order for Coulomb and Riesz modulated energies. pdf
  5. M. Rosenzweig, S. Serfaty, Relative entropy and modulated free energy without confinement via self-similar transformation. pdf
Articles in journals
  1. M. Rosenzweig, S. Serfaty, Modulated logarithmic Sobolev inequalities and generation of chaos, to appear in Annales Fac. Sciences Toulouse. pdf
  2. A. Chodron de Courcel, M. Rosenzweig, S. Serfaty, Sharp uniform-in-time mean-field convergence for singular periodic Riesz flows, to appear in Annales IHP, Analyse non linéaire. pdf
  3. C. Román, E. Sandier, S. Serfaty, Bounded vorticity for the 3D Ginzburg-Landau model and an isoflux problem, Proc. Lond. Math. Soc. (3) 126 (2023), no. 3, 1015-1062. pdf
  4. M. Rosenzweig, S. Serfaty, Global-in-time mean-field convergence for singular Riesz-type diffusive flows, Annals Appl. Proba, 2023, Vol. 33, No. 2, 754-798 pdf
  5. M. Goldman, B. Merlet, M. Pégon, S. Serfaty, Compactness and structure of zero-states for unoriented Aviles-Giga functionals, to appear in J. Inst. Math. Jussieu. pdf
  6. S. Serfaty, Gaussian Fluctuations and Free Energy Expansion for 2D and 3D Coulomb Gases at Any Temperature, to appear in Annales IHP, Probabilités et Statistiques. pdf
  7. Q. H. Nguyen, M. Rosenzweig, S. Serfaty, Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise, Ars Inveniendi Analytica (2022), Paper No. 4, 45 pp. pdf
  8. S. Armstrong, S. Serfaty, Thermal approximation of the equilibrium measure and obstacle problem, Annales Fac. Sciences Toulouse (6) 31 (2022), no. 4, 1085-1110. pdf
  9. S. Armstrong, S. Serfaty, Local Laws and Rigidity for Coulomb Gases at any Temperature, Ann. Proba. 49 (2021), No. 1, 46-121. pdf
  10. S. Serfaty (appendix with M. Duerinckx), Mean Field Limit for Coulomb-Type Flows, Duke Math. J. 169 (2020), No. 15, 2887-2935. pdf
  11. M. Petrache, S. Serfaty, Crystallization for Coulomb and Riesz Interactions as a consequence of the Cohn-Kumar Conjecture, Proc. AMS 148 (2020), 3047-3057. pdf
  12. M. Duerinckx, S. Serfaty, Mean-Field dynamics for Ginzburg-Landau vortices with pinning and applied force, Annals of PDE 4 (2018), no. 2, art. 19, 172 pp. pdf
  13. F. Bekerman, T. Leblé, S. Serfaty, CLT for Fluctuations of Beta-Ensembles with General Potential, Elec. J. Proba, 23 (2018), paper no. 115, 31 pp. pdf
  14. S. Serfaty, J. Serra, Quantitative Stability of the Free Boundary in the Obstacle Problem, Analysis and PDE, 11, No. 7, (2018), 1803-1839. pdf
  15. S. Conti, M. Goldman, F. Otto, S. Serfaty, A branched transport limit of the Ginzburg-Landau functional, J. Ecole Polytech. 5 (2018) 317-375. link
  16. T. Leblé, S. Serfaty, Fluctuations of Two-Dimensional Coulomb Gases, Geom. Funct. Anal. (GAFA), 28, No. 2 (2018) 443-508. pdf
  17. D. Hardin, T. Leblé, E. Saff, S. Serfaty, Large Deviations Principle for Hypersingular Riesz Gases, Constructive Approx. 48, No. 1, (2018) 61-100. pdf
  18. L. Berlyand, E. Sandier, S. Serfaty, A Two-Scale Gamma-Convergence Approach for Random Non-Convex Homogenization, Calc. Var. PDE, 56 (2017), no. 6, art 156, 35pp. pdf
  19. T. Leblé, S. Serfaty, Large Deviation Principle for Empirical Fields of Log and Riesz Gases, Inventiones Math. 210 (2017), No 3, 645-757. pdf
  20. S. Serfaty, Mean Field Limits of the Gross-Pitaevskii and Parabolic Ginzburg-Landau Equations, J. Amer. Math. Soc., 30 (2017), No. 3, 713-768. pdf
  21. T. Leblé, S. Serfaty, O. Zeitouni (appendix by Wei Wu), Large Deviations for the Two-Dimensional Two-Component Plasma, Comm. Math. Phys. 350 (2017), no. 1, 301-360. pdf
  22. S. Conti, F. Otto, S. Serfaty, Branched Microstructures in the Ginzburg-Landau Model of Type-I Superconductors, SIAM J. Math Anal, 48 (2016), No. 4, 2994-3034. pdf
  23. M. Petrache, S. Serfaty, Next Order Asymptotics and Renormalized Energy for Riesz Interactions, J. Institut Math. Jussieu, 16 (2017) No. 3, 501-569. pdf
  24. E. Sandier, S. Serfaty, 1D Log Gases and the Renormalized Energy: Crystallization at Vanishing Temperature, Proba. Theor. Rel. Fields, 162, no 3, (2015), 795-846. pdf
  25. N. Rougerie, S. Serfaty, Higher Dimensional Coulomb Gases and Renormalized Energy Functionals, Comm. Pure Appl. Math. 69 (2016), 519-605. pdf
  26. E. Sandier, S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, Annals of Proba, 43, no 4, (2015), 2026-2083. pdf
  27. S. Rota Nodari, S. Serfaty, Renormalized Energy Equidistribution and Local Charge Balance in 2D Coulomb Systems, Inter. Math. Research Notices (2015), no. 11, 3035-3093. pdf
  28. S. Armstrong, S. Serfaty, O. Zeitouni, Remarks on a constrained optimization problem for the Ginibre ensemble, Potential Anal., 41, no 3, (2014), 945-958 pdf
  29. D. Goldman, C. Muratov, S. Serfaty, The Gamma-limit of the two-dimensional Ohta-Kawasaki functional. Part II: Droplet arrangement via the Renormalized Energy, Arch. Ration. Mech. Anal. 212 (2014), no. 2, 445-501 pdf
  30. S. Serfaty, Ginzburg-Landau vortices, Coulomb gases, and Renormalized Energies, J. Stat. Phys. 154 (2013), no. 3, 660-680. pdf
  31. M. Lewin, P.T. Nam, S. Serfaty, J.P. Solovej, Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. 68 (2015), no 3, 413-471. pdf
  32. D. Goldman, C. Muratov, S. Serfaty, The Gamma-limit of the two-dimensional Ohta-Kawasaki functional. Part I: Droplet density, Arch. Ration. Mech. Anal. 210 (2013), no. 2, 581-613. pdf
  33. N. Rougerie, S. Serfaty, J. Yngvason, Quantum Hall phases and plasma analogy in rotating trapped Bose gases, J. Stat. Phys. 154 (2014), no. 1-2, 2-50. pdf
  34. N. Rougerie, S. Serfaty, J. Yngvason, Quantum Hall states of bosons in rotating anharmonic traps, Phys. Rev. A, 87, (2013), 023618. pdf
  35. S. Serfaty, J. L. Vazquez, A Mean Field Equation as Limit of Nonlinear Diffusions with Fractional Laplacian Operators, Calc Var. PDE 49, (2014), no. 3-4, 1091--1120. pdf
  36. A. Borodin, S. Serfaty, Renormalized Energy Concentration in Random Matrices, Comm. Math. Phys., 320, No 1, (2013), 199-244. pdf
  37. E. Sandier, S. Serfaty, From the Ginzburg-Landau Model to Vortex Lattice Problems, Comm. Math. Phys. 313 (2012), 635-743. pdf
  38. A. Contreras, S. Serfaty, Large Vorticity Stable Solutions to the Ginzburg-Landau Equations, Indiana Univ. Math. J. 61 (2012), 1737-1763. pdf
  39. D. Henao, S. Serfaty, Energy estimates and cavity interaction for a critical-exponent cavitation model, Comm. Pure Appl. Math. (2012), 1-74 pdf
  40. S. Serfaty, I. Tice, Lorentz Space Estimates for the Coulombian Renormalized Energy, Comm. Contemp Math, 14, (2012), No 4, 1250027. pdf
  41. S. Serfaty, I. Tice, Ginzburg-Landau vortex dynamics with pinning and strong applied currents, Arch. Rat. Mech. Anal., 201, No 2 (2011), 413-464. pdf
  42. E. Sandier, S. Serfaty, Improved lower bounds for Ginzburg-Landau energies via mass displacement, Analysis & PDE 4-5 (2011), 757-795. pdf
  43. L. Ambrosio, E. Mainini, S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices, Annales IHP Anal. non lin. 28, No 2, (2011), 217-246. pdf
  44. S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, A, 31, No 4, (2011), 1427-1451, special issue in honor of De Giorgi and Stampacchia. pdf
  45. C. Imbert, S. Serfaty, Repeated games for eikonal equations, integral curvature flows and non-linear parabolic integro-differential equations, Disc. Cont. Dyn. Systems- A, 29, No 4, (2011), 1517-1552. pdf
  46. R. V. Kohn, S. Serfaty, A deterministic-control based approach to fully nonlinear parabolic and elliptic equations, Comm. Pure Appl. Math., 63, (2010), 1298-1350. pdf
  47. G. Francfort, N. Q. Le, S. Serfaty, Critical Points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case, ESAIM: COCV 15 (2009), 576-598. pdf
  48. S. Serfaty, I. Tice, Lorentz Space Estimates for the Ginzburg-Landau Energy, J. Func. Anal. 254 (2008), No 3, 773-825. pdf
  49. A. Aftalion, S. Serfaty, Lowest Landau level approach in superconductivity for the Abrikosov lattice close to H_c2, Selecta Math. 2,13, (2007). pdf
  50. L. Ambrosio, S. Serfaty, A gradient-flow approach for an evolution problem arising in superconductivity, Comm. Pure Appl. Math. 61, (2008), No 11, 1495-1539. pdf
  51. S. Serfaty, Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow, part II: The dynamics, J. Eur. Math Society, 9, No 3, (2007), 383-426. pdf
  52. S. Serfaty, Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow, part I: Study of the perturbed Ginzburg-Landau equation, J. Eur. Math Society , 9, No 2, (2007), 177-217. pdf
  53. R. V. Kohn, S. Serfaty, A deterministic-control based approach to motion by curvature, Comm. Pure Appl. Math, 59, No. 3, (2006), 344-407. pdf
  54. S. Serfaty, Stability in 2D Ginzburg-Landau passes to the limit, Indiana Univ. Math. J., 54, No. 1, (2005), 199-222. pdf
  55. E. Sandier, S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math, 57, No 12, (2004), 1627-1672. pdf
  56. E. Sandier, S. Serfaty, A product-estimate for Ginzburg-Landau and corollaries, J. Func. Anal., 211, No 1, (2004), 219-244. pdf
  57. E. Sandier, S. Serfaty, A product estimate for Ginzburg-Landau and application to the gradient-flow, Compte Rendus de l'Académie des Sciences, 336, (2003), 997-1002.
  58. E. Sandier, S. Serfaty, The decrease of bulk-superconductivity near the second critical field in the Ginzburg-Landau model, SIAM J. Math Anal., 34, No 4, (2003), 939-956. pdf
  59. F. Alouges, T. Rivière, S. Serfaty, Neel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations, ESAIM : COCV, 8, volume dedicated to Jacques-Louis Lions, (2002), 31-68. pdf
  60. E. Sandier, S. Serfaty, Ginzburg-Landau Minimizers Near the First Critical Field Have Bounded Vorticity, Calc of Var PDE , 17, 1 (2003), 17-28. pdf
  61. E. Sandier, S. Serfaty, Limiting Vorticities for the Ginzburg-Landau Equations, Duke Math. J., 117, No 3, (2003), 403-446. pdf
  62. T. Rivière, S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to micromagnetics, Comm PDE, 28, No 1 and 2, (2003), 249-269. pdf
  63. H. Brezis, S. Serfaty, A variational formulation for the two-sided obstacle problem with measure data, Comm. Contemp. Math, 4, No 2, (2002), 357-374. pdf
  64. S. Serfaty, On a Model of Rotating Superfluids, ESAIM: Controle, Opt. et Calcul des Variations, 6, (2001), 201-238. pdf
  65. T. Rivière, S. Serfaty, Limiting Domain-Wall Energy for a Problem Related to Micromagnetics, Comm. Pure Appl, Math., 54, No3, (2001), 294-338. pdf
  66. A. Aftalion, E. Sandier, S. Serfaty, Pinning Phenomena in the Ginzburg-Landau model of Superconductivity, J. Math. Pures Appl., 80, No 3, (2001), 339-372. pdf
  67. E. Sandier, S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, Annales Scientifiques de l'ENS, 4e Ser, 33, (2000), 561-592. pdf
  68. E. Sandier, S. Serfaty, On the Energy of Type-II Superconductors in the Mixed Phase, Reviews Math. Physics, 12, No 9, (2000), 1219-1257. pdf
  69. E. Sandier, S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field, Annales IHP, Analyse non linéaire, 17, No. 1, (2000), 119-145. link
  70. S. Serfaty, Stable Configurations in Superconductivity : Uniqueness, Multiplicity and Vortex-Nucleation, Arch. Rat. Mech. Anal., 149, (1999), 329-365. link
  71. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part II, Comm. Contemp. Math., 1, No. 3, (1999), 295-333. link
  72. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part I, Comm. Contemp. Math., 1 , No. 2, (1999), 213-254. link
  73. S. Serfaty, Solutions stables de l'équation de Ginzburg-Landau en présence de champ magnétique, Compte Rendus de l'Académie des Sciences, tome 326, No. 8, série I, (1998), 949-954.