Applied Math Seminar
The Applied Math Seminar hosts a wide range of talks in fields such as applied analysis, mathematical biology, fluid dynamics and electromagnetics, numerical computation, etc.
The seminar usually meets at 2:30pm on Fridays in room 1302 of Warren Weaver Hall.
Please email oneil@cims.nyu.edu with suggestions for speakers. If you would like to be added to the mailing list, please send an email to cims-ams+subscribe@nyu.edu from the address at which you wish to receive announcements.
Seminar Organizer(s): Mike O'Neil
Upcoming Events
-
Friday, December 6, 202411AM, Warren Weaver Hall 1314
TBA
Jennifer Crodelle, Middlebury College
Past Events
-
Friday, November 8, 20242:30PM, Warren Weaver Hall 1302
On Novel Solitary Patterns in a Class of Klein-Gordon Equations
Philip Rosenau, Tel-Aviv UniversitySynopsis:
We study the emergence, stability and evolution of solitons and compactons in a class of Klein-Gordon equations
\(u_{tt} - u_{xx} + u = u^{1+n} - \kappa_{1+2n} u^{1+2n}, \quad n= 1, 2, \ldots\)
endowed with trivial and non-trivial stable equilibria, and demonstrate that similarly to the classical \(\kappa_{1+2n} = 0\) cases, solitons are linearly unstable, but their instability weakens as \(\kappa_{1+2n}\) increases, and vanishes at a critical \(\kappa_{1+2n}^{crit} = (1+n)/(2+n)^2\), where solitons disappear and kinks form.
As the growing amplitude of the unstable soliton approaches the non-trivial equilibrium, it morphs into ”meson”, a robust box shaped sharp pulse with a flat-top plateau which expands at a sonic speed. In the \(\kappa_{1+2n}^{crit}\) vicinity, where the instability is suppressed, and the internal modes hardly change, solitons persist for a very long time and rather than turn into meson, convert to breather.
Linear damping tempers the conversion and slows it. When \(-1/2 < n < 0\), compactons emerge and being unstable morph either to meson or to breather.
Joint work with Slava Krylov.
-
Friday, October 25, 20242:30PM, Warren Weaver Hall 1302
Spreading Processes on Networks
Gadi Fibich, Tel Aviv UniversitySynopsis:
Spreading of innovations and epidemics is a classical problem. Traditionally, they have been analyzed using compartmental models (Bass, SI, …), which implicitly assume that all the individuals are homogeneous and connected to each other. To relax these assumptions, research has gradually shifted to the more fundamental network models, which are particle models for the stochastic adoption/infection by each individual.
In this talk I will present an emerging mathematical theory for the Bass and SI models on networks. I will present analytic tools that enable us to obtain explicit expressions for the expected adoption/infection level on various networks (complete, circular, d-regular, Erdos-Renyi, …), without employing mean-field type approximations. The main focus of the talk will be on the effect of network structure. For example, which networks yield the slowest and fastest spreading? What is the effect of boundaries? Of heterogeneity among individuals? How does the network structure influence the optimal promotional strategy?