Magneto-Fluid Dynamics Seminar
An adjoint approach for the shape gradients of three-dimensional magneto-hydrodynamic equilibria
Speaker: Elizabeth Paul, University of Maryland, College Park
Location: Warren Weaver Hall 905
Date: Tuesday, November 19, 2019, 11 a.m.
Synopsis:
A continuous adjoint method has been developed for obtaining the derivatives of functions of the magneto-hydrodynamic (MHD) equilibrium equations with respect to the shape of the boundary of the domain or the shape of the electro-magnetic coils [1]. This approach is based on the generalization of the self-adjointness of the linearized MHD force operator. The adjoint equation corresponds to a perturbed force balance equation with the addition of a bulk force, rotational transform, or toroidal current perturbation. We numerically demonstrate this approach by adding a small perturbation to the non-linear VMEC [2] solution, obtaining an order $10^2-10^3$ reduction in cost in comparison with a finite difference approach. Examples are presented for the shape gradient of the rotational transform and vacuum magnetic well, a proxy for MHD stability. The adjoint solution required for the magnetic ripple, a proxy for near-axis quasisymmetry, requires the addition of an anisotropic pressure tensor to the MHD force balance equation. This modification has been implemented in the ANIMEC [3] code. We furthermore demonstrate that this adjoint approach can be applied to compute shape gradients of two important figures of merit [4], the departure from quasisymmetry and the effective ripple in the low-collisionality neoclassical regime, but require the development of new equilibrium solvers. Finally, initial steps toward adjoint solutions with a linearized equilibrium approach will be presented.
[1] Antonsen, T.M., Paul, E.J. & Landreman, M. 2019 Adjoint approach to calculating shape gradients for three-dimensional magnetic confinement equilibria. Journal of Plasma Physics 85 (2).
[2] Hirshman, S.P. & Whitson, J.C. 1983 Steepest descent moment method for three-dimensional magnetohydrodynamic equilibria. Physics of Fluids 26 (12), 3553.
[3] Cooper, W.A., Hirshman, S.P., Merazzi, S. & Gruber, R. 1992 3D magnetohydrodynamic equilibria with anisotropic pressure. Computer Physics Communications 72 (1),1–13.
[4] Paul, E.J., Antonsen, T.M., Landreman, M., Cooper, W.A. Submitted to Journal of Plasma Physics.